1
|
Yuan L, Huang DS. A Network-guided Association Mapping Approach from DNA Methylation to Disease. Sci Rep 2019; 9:5601. [PMID: 30944378 PMCID: PMC6447594 DOI: 10.1038/s41598-019-42010-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2019] [Indexed: 01/11/2023] Open
Abstract
Aberrant DNA methylation may contribute to development of cancer. However, understanding the associations between DNA methylation and cancer remains a challenge because of the complex mechanisms involved in the associations and insufficient sample sizes. The unprecedented wealth of DNA methylation, gene expression and disease status data give us a new opportunity to design machine learning methods to investigate the underlying associated mechanisms. In this paper, we propose a network-guided association mapping approach from DNA methylation to disease (NAMDD). Compared with existing methods, NAMDD finds methylation-disease path associations by integrating analysis of multiple data combined with a stability selection strategy, thereby mining more information in the datasets and improving the quality of resultant methylation sites. The experimental results on both synthetic and real ovarian cancer data show that NAMDD substantially outperforms former disease-related methylation site research methods (including NsRRR and PCLOGIT) under false positive control. Furthermore, we applied NAMDD to ovarian cancer data, identified significant path associations and provided hypothetical biological path associations to explain our findings.
Collapse
Affiliation(s)
- Lin Yuan
- Institute of Machine Learning and Systems Biology, College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P.R. China.
| |
Collapse
|
2
|
Ruan W, Li J, Xu Y, Wang Y, Zhao F, Yang X, Jiang H, Zhang L, Saavedra JM, Shi L, Pang T. MALAT1 Up-Regulator Polydatin Protects Brain Microvascular Integrity and Ameliorates Stroke Through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ Pathway. Cell Mol Neurobiol 2019; 39:265-286. [PMID: 30607811 PMCID: PMC11469806 DOI: 10.1007/s10571-018-00646-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA contributing to protect the blood-brain barrier (BBB) after stroke. We searched for small molecules that may up-regulate MALAT1 and focused on polydatin (PD), a natural product, as a possible candidate. PD enhanced MALAT1 gene expression in rat brain microvascular endothelial cells, reducing cell toxicity and apoptosis after oxygen and glucose deprivation (OGD). These effects correlated with reduction of inflammatory factors and enhancement of expression of BBB markers. We found opposite changes after MALAT1 silencing. We determined that C/EBPβ is a key transcription factor for PD-mediated MALAT1 expression. PPARγ activity is involved in MALAT1 protective effects through its coactivator PGC-1α and the transcription factor CREB. This suggests that PD activates the MALAT1/CREB/PGC-1α/PPARγ signaling pathway to protect endothelial cells against ischemia. PD administration to rats subjected to brain ischemia by transient middle cerebral artery occlusion (tMCAO) reduced cerebral infarct volume and brain inflammation, protected cerebrovascular endothelial cells and BBB integrity. These effects correlated with increased expression of MALAT1, C/EBPβ, and PGC-1α. Our results strongly suggest that the beneficial effects of PD involve the C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway, which may provide a novel therapeutic strategy for brain ischemic stroke.
Collapse
Affiliation(s)
- Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Jingwei Li
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yunjie Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xu Yang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
3
|
Chen Y, Liu R, Chu Z, Le B, Zeng H, Zhang X, Wu Q, Zhu G, Chen Y, Liu Y, Sun F, Lu Z, Qiao Y, Wang J. High glucose stimulates proliferative capacity of liver cancer cells possibly via O-GlcNAcylation-dependent transcriptional regulation of GJC1. J Cell Physiol 2018; 234:606-618. [PMID: 30078215 DOI: 10.1002/jcp.26803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Although it is generally accepted that diabetes is one of the most important risk factors for liver cancer, the underlying mechanism is still not well understood. The purpose of the current study is to further investigate how high concentrations of glucose (HG), a major symptom of diabetes, stimulate the development of liver malignancy. Using data mining, gap junction protein gamma 1 (GJC1) was identified as a critical proto-oncoprotein that is essential for the HG stimulation of proliferative capacity in liver cancer cells. Furthermore, enhanced transcriptional expression of GJC1 might occur after stimulation by HG. A transcription factor zinc finger protein 410 (APA1)-binding motif was found to be located at the -82 to -77 nt region within the GJC1 promoter. Without APA1, HG was unable to increase GJC1 expression. Interestingly, APA1, but not GJC1, can be O-GlcNAcylated in liver cancer cells. Moreover, O-GlcNAcylation is essential for HG-induced APA1 binding to the GJC1 promoter. Notably, global O-GlcNAcylation and expression of APA1 and GJC1 were highly elevated in liver cancer patients with diabetes compared to those in patients without diabetes. The HG-stimulated proliferative capacity was abolished upon decreasing O-GlcNAcylation, which could be reversed gradually by the simultaneous overexpression of APA1 and GJC1. Therefore, GJC1 could be a potential target for preventing liver cancer in patients with diabetes.
Collapse
Affiliation(s)
- Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Liu
- Department of Scientific Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhexuan Chu
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Bu Le
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Zeng
- Department of Pathology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Guangzhou, China
| | - Xiao Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoqing Zhu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuxin Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhicheng Lu
- Department of Medical Affairs Office, Shanghai seventh People's Hospital, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Electroacupuncture alleviates retrieval of pain memory and its effect on phosphorylation of cAMP response element-binding protein in anterior cingulate cortex in rats. Behav Brain Funct 2015; 11:9. [PMID: 25886521 PMCID: PMC4364627 DOI: 10.1186/s12993-015-0055-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Recent evidence suggests that persistent pain and recurrent pain are due to the pain memory which is related to the phosphorylation of cAMP response element-binding protein (p-CREB) in anterior cingulate cortex (ACC). Eletroacupuncture (EA), as a complementary Chinese medical procedure, has a significant impact on the treatment of pain and is now considered as a mind-body therapy. Methods The rat model of pain memory was induced by two injections of carrageenan into the paws, which was administered separately by a 14-day interval, and treated with EA therapy. The paw withdrawal thresholds (PWTs) of animals were measured and p-CREB expressions in ACC were detected by using immunofluorescence (IF) and electrophoretic mobility shift assay (EMSA). Statistical comparisons among different groups were made by one-way, repeated-measures analysis of variance (ANOVA). Results The second injection of carrageenan caused the decrease of PWTs in the non-injected hind paw. EA stimulation applied prior to the second injection, increased the values of PWTs. In ACC, the numbers of p-CREB positive cells were significantly increased in pain memory model rats, which were significantly reduced by EA. EMSA results showed EA also down-regulated the combining capacity of p-CREB with its DNA. Furthermore, the co-expression of p-CREB with GFAP, OX-42, or NeuN in ACC was strengthened in the pain memory model rats. EA inhibited the co-expression of p-CREB with GFAP or OX-42, but not NeuN in ACC. Conclusions The present results suggest the retrieval of pain memory could be alleviated by the pre-treatment of EA, which is at least partially attributed to the down-regulated expression and combining capacity of p-CREB and the decreased expression of p-CREB in astrocytes and microglia cells.
Collapse
|
5
|
The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma. Oncogene 2015; 34:5781-95. [PMID: 25728681 DOI: 10.1038/onc.2015.36] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 12/24/2022]
Abstract
Yes-associated protein (YAP) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). However, whether membrane protein can serve not only as a tumor marker that reflects YAP function but also as a therapeutic target that stimulates tumorigenesis in HCC remains unknown. Here we report that the membrane protein melanoma cell adhesion molecule (MCAM) was under positive regulation by YAP and was highly elevated in HCC cells. Within the MCAM promoter, we found the presence of a cAMP Response Element (CRE; -32 to -25 nt), which is conserved among species and is essential for YAP- and CREB-dependent regulation. Moreover, the interaction between CREB and YAP at the CRE site was dependent on PTPIY-WW domain interactions. However, MCAM expression was low and could not be regulated by YAP in breast and colon cancer cells because of the low levels of the acetyltransferase p300. In HCC cells, high levels of p300 facilitated the binding of YAP to the MCAM promoter, which in turn enhanced histone acetylation and polymerase II recruitment through the dissociation of the deacetylase Sirt1. These results suggest that MCAM is an HCC-specific target of YAP. In clinical serum samples, we found that the serum levels of MCAM were highly elevated in patients with HCC compared with healthy controls and with patients with cirrhosis, hepatitis, colon cancer and breast cancer. MCAM levels were shown to be a slightly better indicator than serum alpha-fetoprotein for predicting HCC. We further demonstrated that MCAM is essential for the survival and transformation of HCC. Mechanistically, MCAM induced translation initiation and the transcriptional activities of c-Jun/c-Fos. In addition, AKT activation had an essential role in the MCAM-promoted binding of eukaryotic initiation factor 4E to c-Jun/c-Fos mRNA. In conclusion, we demonstrated that MCAM may be a potential tumor marker and therapeutic target for the diagnosis and treatment of HCC.
Collapse
|
6
|
Brewer MH, Ma KH, Beecham GW, Gopinath C, Baas F, Choi BO, Reilly MM, Shy ME, Züchner S, Svaren J, Antonellis A. Haplotype-specific modulation of a SOX10/CREB response element at the Charcot-Marie-Tooth disease type 4C locus SH3TC2. Hum Mol Genet 2014; 23:5171-87. [PMID: 24833716 PMCID: PMC4168306 DOI: 10.1093/hmg/ddu240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutations in the Src homology 3 (SH3) domain and tetratricopeptide repeats 2 (SH3TC2) gene cause autosomal recessive demyelinating Charcot-Marie-Tooth neuropathy. The SH3TC2 protein has been implicated in promyelination signaling through axonal neuregulin-1 and the ERBB2 Schwann cell receptor. However, little is known about the transcriptional regulation of the SH3TC2 gene. We performed computational and functional analyses that revealed two cis-acting regulatory elements at SH3TC2-one at the promoter and one ∼150 kb downstream of the transcription start site. Both elements direct reporter gene expression in Schwann cells and are responsive to the transcription factor SOX10, which is essential for peripheral nervous system myelination. The downstream enhancer harbors a single-nucleotide polymorphism (SNP) that causes an ∼80% reduction in enhancer activity. The SNP resides directly within a predicted binding site for the transcription factor cAMP response element binding protein (CREB), and we demonstrate that this regulatory element binds to CREB and is activated by CREB expression. Finally, forskolin induces Sh3tc2 expression in rat primary Schwann cells, indicating that SH3TC2 is a CREB target gene. These findings prompted us to determine if SNP genotypes at SH3TC2 are associated with differential phenotypes in the most common demyelinating peripheral neuropathy, CMT1A. Interestingly, this revealed several associations between SNP alleles and disease severity. In summary, our data indicate that SH3TC2 is regulated by the transcription factors CREB and SOX10, define a regulatory SNP at this disease-associated locus and reveal SH3TC2 as a candidate modifier locus of CMT disease phenotypes.
Collapse
Affiliation(s)
| | - Ki Hwan Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Gary W Beecham
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Centre, Amsterdam, The Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-Gu, Seoul, Korea
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Michael E Shy
- Department of Neurology Department of Pediatrics and Department of Physiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Department of Human Genetics Department of Neurology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Neuroprotective Effects of 3,6′-Disinapoyl Sucrose Through Increased BDNF Levels and CREB Phosphorylation via the CaMKII and ERK1/2 Pathway. J Mol Neurosci 2014; 53:600-7. [DOI: 10.1007/s12031-013-0226-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/29/2013] [Indexed: 12/23/2022]
|
8
|
Yu Z, Zhao X, Huang L, Zhang T, Yang F, Xie L, Song S, Miao P, Zhao L, Sun X, Liu J, Huang G. Proviral insertion in murine lymphomas 2 (PIM2) oncogene phosphorylates pyruvate kinase M2 (PKM2) and promotes glycolysis in cancer cells. J Biol Chem 2013; 288:35406-16. [PMID: 24142698 DOI: 10.1074/jbc.m113.508226] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is a key player in the Warburg effect of cancer cells. However, the mechanisms of regulating PKM2 are not fully elucidated. Here, we identified the protein-serine/threonine kinase PIM2, a known oncogene, as a novel binding partner of PKM2. The interaction between PIM2 and PKM2 was confirmed by multiple biochemical approaches in vitro and in cultured cells. Importantly, we found that PIM2 could directly phosphorylate PKM2 on the Thr-454 residue, resulting in an increase of PKM2 protein levels. Compared with wild type, PKM2 with the phosphorylation-defective mutation displayed a reduced effect on glycolysis, co-activating HIF-1α and β-catenin, and cell proliferation, while enhancing mitochondrial respiration of cancer cells. These findings demonstrate that PIM2-dependent phosphorylation of PKM2 is critical for regulating the Warburg effect in cancer, highlighting PIM2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhenhai Yu
- From the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, Wang H, Xiao W, Li L, Chu Q, Pan Q, Yu Y, Sun F. Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology 2013; 58:1011-20. [PMID: 23532963 DOI: 10.1002/hep.26420] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/16/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Yes-associated protein (YAP), the downstream effecter of the Hippo-signaling pathway as well as cyclic adenosine monophosphate response element-binding protein (CREB), has been linked to hepatocarcinogenesis. However, little is known about whether and how YAP and CREB interact with each other. In this study, we found that YAP-CREB interaction is critical for liver cancer cell survival and maintenance of transformative phenotypes, both in vitro and in vivo. Moreover, both CREB and YAP proteins are highly expressed in a subset of human liver cancer samples and are closely correlated. Mechanistically, CREB promotes YAP transcriptional output through binding to -608/-439, a novel region from the YAP promoter. By contrast, YAP promotes protein stabilization of CREB through interaction with mitogen-activated protein kinase 14 (MAPK14/p38) and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC). Gain-of-function and loss-of-function studies demonstrated that phosphorylation of CREB by MAPK14/p38 at ser133 ultimately leads to its degradation. Such effects can be enhanced by BTRC through phosphorylation of MAPK14/p38 at Thr180/Tyr182. However, YAP negatively controls phosphorylation of MAPK14/p38 through inhibition of BTRC expression. CONCLUSION There is a novel positive autoregulatory feedback loop underlying the interaction between YAP and CREB in liver cancer, suggesting that YAP and CREB form a nexus to integrate the protein kinase A, Hippo/YAP, and MAPK14/p38 pathways in cancer cells and thus may be helpful in the development of effective diagnosis and treatment strategies against liver cancer.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Derailed endocytosis is a hallmark of cancer. The endocytic pathway, as demonstrated by our laboratory, is a frequent target of genomic aberrations in cancer and plays a critical role in the maintenance of cellular polarity, stem cell function, bioenergetics, proliferation, motility, invasion, metastasis, apoptosis and autophagy. The Rab GTPases, along with their effectors, are critical regulators of this endocytic machinery and can have a huge impact on the cellular itinerary of growth and metabolism. Rab25 is an epithelial-cell-specific member of the Rab GTPase superfamily, sharing close homology with Rab11a, the endosomal recycling Rab GTPase. RAB25 has been implicated in various cancers, with reports presenting it as both an oncogene and a tumour-suppressor gene. At the cellular level, Rab25 was shown to contribute to invasiveness of cancer cells by regulating integrin trafficking. Recently, our laboratory uncovered a critical role for Rab25 in cellular energetics. Assimilating all of the existing evidence, in the present review, we give an updated overview of the complex and often context-dependent role of Rab25 in cancer.
Collapse
|
11
|
Zhuang LL, Jin R, Zhu LH, Xu HG, Li Y, Gao S, Liu JY, Zhou GP. Promoter characterization and role of cAMP/PKA/CREB in the basal transcription of the mouse ORMDL3 gene. PLoS One 2013; 8:e60630. [PMID: 23577138 PMCID: PMC3618037 DOI: 10.1371/journal.pone.0060630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Orosomucoid 1-like 3 (ORMDL3) gene was strongly linked with the development of asthma in genetic association studies, and its expression could be significantly induced by allergen in airway epithelial cells of mice. However, the expression mechanism of ORMDL3 was still unclear. Here we have identified and characterized the mouse ORMDL3 gene promoter. Deletion constructs of the 5' flanking region were fused to a luciferase reporter gene. After transient transfection in mouse fibroblast cell line NIH3T3, a CRE (-27/-20) binding CREB was identified in the core promoter region. Deletion or mutation of the CRE consensus sequence resulted in a significant loss of the promoter activity. EMSA and ChIP assays demonstrated the binding of CREB to the core promoter. Knocking down endogenous CREB led to a reduction in ORMDL3 expression. Conversely, overexpression of CREB up-regulated ORMDL3 expression. Moreover, forskolin, a PKA activator, could facilitate the phosphorylation of CREB, which in turn heightens ORMDL3 expression. H-89, a PKA-specific inhibitor, could significantly inhibit ORMDL3 expression. This study delineates the characterization of mouse ORMDL3 gene promoter and shows signaling pathway cAMP/PKA/CREB plays an important role in regulating ORMDL3 expression, which will be helpful for future animal model studies regarding the regulation or function of ORMDL3 gene.
Collapse
Affiliation(s)
- Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liang-Hua Zhu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yue Li
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shan Gao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jia-Yin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
12
|
Tong M, Chan KW, Bao JYJ, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S, Guan XY, Ma S. Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 2012; 72:6024-35. [PMID: 22991305 DOI: 10.1158/0008-5472.can-12-1269] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC), the major histologic subtype of esophageal cancer, is a devastating disease characterized by distinctly high incidences and mortality rates. However, there remains limited understanding of molecular events leading to development and progression of the disease, which are of paramount importance to defining biomarkers for diagnosis, prognosis, and personalized treatment. By high-throughout transcriptome sequence profiling of nontumor and ESCC clinical samples, we identified a subset of significantly differentially expressed genes involved in integrin signaling. The Rab25 gene implicated in endocytic recycling of integrins was the only gene in this group significantly downregulated, and its downregulation was confirmed as a frequent event in a second larger cohort of ESCC tumor specimens by quantitative real-time PCR and immunohistochemical analyses. Reduced expression of Rab25 correlated with decreased overall survival and was also documented in ESCC cell lines compared with pooled normal tissues. Demethylation treatment and bisulfite genomic sequencing analyses revealed that downregulation of Rab25 expression in both ESCC cell lines and clinical samples was associated with promoter hypermethylation. Functional studies using lentiviral-based overexpression and suppression systems lent direct support of Rab25 to function as an important tumor suppressor with both anti-invasive and -angiogenic abilities, through a deregulated FAK-Raf-MEK1/2-ERK signaling pathway. Further characterization of Rab25 may provide a prognostic biomarker for ESCC outcome prediction and a novel therapeutic target in ESCC treatment.
Collapse
Affiliation(s)
- Man Tong
- Department of Pathology, Genome Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|