1
|
Cheng P, Hothpet V, Bhat G, Bailey K, Li L, Samuelson DR. Alcohol induces α2-6sialo mucin O-glycans that kill U937 macrophages mediated by sialic acid-binding immunoglobulin-like lectin 7 (Siglec 7). FEBS Open Bio 2025; 15:165-179. [PMID: 39592427 PMCID: PMC11705458 DOI: 10.1002/2211-5463.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Alcohol misuse increases infections and cancer fatalities, but mechanisms underlying its toxicity are ill-defined. We show that alcohol treatment of human tracheobronchial epithelial cells leads to inactivation of giantin-mediated Golgi targeting of glycosylation enzymes. Loss of core 2 N-acetylglucosaminyltransferase 1, which uses only giantin for Golgi targeting, coupled with shifted targeting of other glycosylation enzymes to Golgi matrix protein 130-Golgi reassembly stacking protein 65, the site normally used by core 1 enzyme, results in loss of sialyl Lewis x and increase of sialyl Lewis a and α2-6sialo mucin O-glycans. The α2-6sialo mucin O-glycans induced by alcohol cause death of U937 macrophages mediated by sialic acid-binding immunoglobulin-like lectin 7. These results provide a mechanistic insight into the cause of the toxic effects of alcohol and might contribute to the development of therapies to alleviate its toxicity.
Collapse
Affiliation(s)
- Pi‐Wan Cheng
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Vishwanath‐Reddy Hothpet
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Present address:
State Forensic LaboratoryBengaluruIndia
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Present address:
Dayananda Sagar UniversityBengaluruIndia
| | - Kristina Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Lei Li
- Department of Chemistry and Center for Diagnostic & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Derrick R. Samuelson
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
2
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
J M, Sanji AS, Gurav MJ, Megalamani PH, Vanti G, Kurjogi M, Kaulgud R, Kennedy JF, Chachadi VB. Overexpression of sialyl Lewis a carrying mucin-type glycoprotein in prostate cancer cell line contributes to aggressiveness and metastasis. Int J Biol Macromol 2024; 281:136519. [PMID: 39401629 DOI: 10.1016/j.ijbiomac.2024.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Metastasis-promoting Lewis and sialyl Lewis antigens expressed on glycoproteins such as mucins are frequently displayed on the surface of prostate cancer cells and could thus be ideal candidates as measures of prostate cancer aggressiveness. The current study describes the altered expression of sialyl Lewisa (sLea) antigen attached to glycoproteins and key glycosyltransferases between normal prostate (RWPE-1) and cancerous cell lines (LNCaP and DU145). Our results suggest that the expression of sLea on different glycoproteins correlates with the aggressiveness of prostate cancer cells, as determined by flow cytometry and fluorescence microscopy. Blotting studies revealed that sLea-bearing glycoproteins, similar to mucins, are predominantly expressed in the more aggressive DU145 cells, followed by LNCaP cells. Immunohistochemistry technique showed a gradient of sLea expression, with low levels in low-grade prostate cancer (stage II/III) and increasing levels in high-grade cancer (stage IV), indicating its potential as a prognostic marker. Additionally, in qRT-PCR analysis significant upregulation of the glycosyltransferases GALNT5 and ST3GAL6 was observed, correlating with the increased sLea expression in LNCaP (3.2- and 14.5-fold) and DU145 (3.3- and 23.75-fold) cells. Our data indicates a correlation between sLea selectin ligand expression and prostate cancer aggressiveness. Furthermore, GALNT5 and ST3GAL6 could serve as benchmarks in PCa malignancy.
Collapse
Affiliation(s)
- Manasa J
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Ashwini S Sanji
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Maruti J Gurav
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Prasanna H Megalamani
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Gulamnabi Vanti
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - Mahantesh Kurjogi
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - Ram Kaulgud
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - John F Kennedy
- Chembiotech Ltd, Kyrewood House, Tenbury Wells WR15 8FF, UK
| | - Vishwanath B Chachadi
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
4
|
Chen J, Xu D, Huang Q, Wang S, Li F, Wu S, Wang W, Zhou N. A novel dual-recognition fluorescent biosensor for sialyl-Lewis x sensitive detection. Mikrochim Acta 2024; 191:479. [PMID: 39042166 DOI: 10.1007/s00604-024-06555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
Sialyl-Lewisx (SLex) is a tetrasugar, which plays an important role in initial inflammation and cancer cell metastasis, and can be used as a marker for cancer diagnosis and prognosis or a therapeutic target. Detecting SLex from complex biological media remains a significant challenge. Herein, a single-stranded DNA aptamer of SLex was screened based on the double-stranded DNA library-modified magnetic bead (MB)-SELEX technology. After 14 rounds of screening, 12,639 sequences were obtained and divided into nine families. Three representative sequences were selected based on the number of sequence repeats and Gibbs binding free energy, and the aptamer SLex-Apt2 with 80 nt length (Kd = 23.01 nM) had the best affinity and relatively high specificity for targeting SLex. Then, a novel dual-recognition fluorescent biosensor for SLex-sensitive detection based on aptamer SLex-Apt2 bio-dots and 3-aminobenzoboric acid-modified MB was developed. This method can detect SLex as low as 32 μM and has a good linear response in the range 100 μM to 2 mM. It has the advantages of low preparation cost, good targeting, and avoiding the occurrence of false-positive and false-negative detection results, which makes the biosensor more valuable in biological detection and clinical diagnosis.
Collapse
Affiliation(s)
- Jinri Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China.
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Dong Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
| | - Fuhou Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
| | - Shaojie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
| | - Weixia Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, 59 Cangwu Road, Haizhou, 222005, Lianyungang, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Sanji AS, J M, Gurav MJ, Batra SK, Chachadi VB. Cancer snap-shots: Biochemistry and glycopathology of O-glycans: A review. Int J Biol Macromol 2024; 260:129318. [PMID: 38232866 DOI: 10.1016/j.ijbiomac.2024.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.
Collapse
Affiliation(s)
- Ashwini S Sanji
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Manasa J
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Maruti J Gurav
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishwanath B Chachadi
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India.
| |
Collapse
|
6
|
Greville G, Llop E, Howard J, Madden SF, Perry AS, Peracaula R, Rudd PM, McCann A, Saldova R. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin Epigenetics 2021; 13:34. [PMID: 33579350 PMCID: PMC7881483 DOI: 10.1186/s13148-021-01015-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background Glycosylation, one of the most fundamental post-translational modifications, is altered in cancer and is subject in part, to epigenetic regulation. As there are many epigenetic-targeted therapies currently in clinical trials for the treatment of a variety of cancers, it is important to understand the impact epi-therapeutics have on glycosylation. Results Ovarian and triple negative breast cancer cells were treated with the DNA methyltransferase inhibitor, 5-AZA-2-deoxycytidine (5-AZA-dC). Branching and sialylation were increased on secreted N-glycans from chemo-sensitive/non-metastatic cell lines following treatment with 5-AZA-dC. These changes correlated with increased mRNA expression levels in MGAT5 and ST3GAL4 transcripts in ovarian cancer cell lines. Using siRNA transient knock down of GATA2 and GATA3 transcription factors, we show that these regulate the glycosyltransferases ST3GAL4 and MGAT5, respectively. Moreover, 5-AZA-dC-treated cells displayed an increase in migration, with a greater effect seen in chemo-sensitive cell lines. Western blots showed an increase in apoptotic and senescence (p21) markers in all 5-AZA-dC-treated cells. The alterations seen in N-glycans from secreted glycoproteins in 5-AZA-dC-treated breast and ovarian cancer cells were similar to the N-glycans previously known to potentiate tumour cell survival. Conclusions While the FDA has approved epi-therapeutics for some cancer treatments, their global effect is still not fully understood. This study gives insight into the effects that epigenetic alterations have on cancer cell glycosylation, and how this potentially impacts on the overall fate of those cells. Graphic abstract ![]()
Collapse
Affiliation(s)
- Gordon Greville
- GlycoScience Group, the National Institute for Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland.,College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jane Howard
- College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
| | - Antoinette S Perry
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,School of Biology and Environmental Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Pauline M Rudd
- GlycoScience Group, the National Institute for Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Amanda McCann
- College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Radka Saldova
- GlycoScience Group, the National Institute for Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland. .,College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Wang J, Tian GG, Li X, Sun Y, Cheng L, Li Y, Shen Y, Chen X, Tang W, Tao S, Wu J. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol 2020; 8:555. [PMID: 32754589 PMCID: PMC7365846 DOI: 10.3389/fcell.2020.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.
Collapse
Affiliation(s)
- Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G. Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Tang
- School of Chemistry Science and Technology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Szabó E, Hornung Á, Monostori É, Bocskai M, Czibula Á, Kovács L. Altered Cell Surface N-Glycosylation of Resting and Activated T Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20184455. [PMID: 31509989 PMCID: PMC6770513 DOI: 10.3390/ijms20184455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023] Open
Abstract
Altered cell surface glycosylation in congenital and acquired diseases has been shown to affect cell differentiation and cellular responses to external signals. Hence, it may have an important role in immune regulation; however, T cell surface glycosylation has not been studied in systemic lupus erythematosus (SLE), a prototype of autoimmune diseases. Analysis of the glycosylation of T cells from patients suffering from SLE was performed by lectin-binding assay, flow cytometry, and quantitative real-time PCR. The results showed that resting SLE T cells presented an activated-like phenotype in terms of their glycosylation pattern. Additionally, activated SLE T cells bound significantly less galectin-1 (Gal-1), an important immunoregulatory lectin, while other lectins bound similarly to the controls. Differential lectin binding, specifically Gal-1, to SLE T cells was explained by the increased gene expression ratio of sialyltransferases and neuraminidase 1 (NEU1), particularly by elevated ST6 beta-galactosamide alpha-2,6-sialyltranferase 1 (ST6GAL1)/NEU1 and ST3 beta-galactoside alpha-2,3-sialyltransferase 6 (ST3GAL6)/NEU1 ratios. These findings indicated an increased terminal sialylation. Indeed, neuraminidase treatment of cells resulted in the increase of Gal-1 binding. Altered T cell surface glycosylation may predispose the cells to resistance to the immunoregulatory effects of Gal-1, and may thus contribute to the pathomechanism of SLE.
Collapse
Affiliation(s)
- Enikő Szabó
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences 6726 Szeged, Hungary.
| | - Ákos Hornung
- Department of Rheumatology and Immunology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Éva Monostori
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences 6726 Szeged, Hungary.
| | - Márta Bocskai
- Department of Rheumatology and Immunology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.
| | - Ágnes Czibula
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences 6726 Szeged, Hungary.
| | - László Kovács
- Department of Rheumatology and Immunology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.
| |
Collapse
|
9
|
Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J 2018; 35:139-160. [PMID: 29680984 PMCID: PMC5916985 DOI: 10.1007/s10719-018-9820-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.
Collapse
Affiliation(s)
- Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.,Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.
| |
Collapse
|
10
|
Kohler RS, Anugraham M, López MN, Xiao C, Schoetzau A, Hettich T, Schlotterbeck G, Fedier A, Jacob F, Heinzelmann-Schwarz V. Epigenetic activation of MGAT3 and corresponding bisecting GlcNAc shortens the survival of cancer patients. Oncotarget 2018; 7:51674-51686. [PMID: 27429195 PMCID: PMC5239506 DOI: 10.18632/oncotarget.10543] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/26/2016] [Indexed: 12/21/2022] Open
Abstract
Bisecting GlcNAc on N-glycoproteins is described in E-cadherin-, EGF-, Wnt- and integrin- cancer-associated signaling pathways. However, the mechanisms regulating bisecting GlcNAc expression are not clear. Bisecting GlcNAc is attached to N-glycans through beta 1-4 N-acetylglucosaminyl transferase III (MGAT3), which is encoded by two exons flanked by high-density CpG islands. Despite a recently described correlation of MGAT3 and bisecting GlcNAc in ovarian cancer cells, it remains unknown whether DNA methylation is causative for the presence of bisecting GlcNAc. Here, we narrow down the regulatory genomic region and show that reconstitution of MGAT3 expression with 5-Aza coincides with reduced DNA methylation at the MGAT3 transcription start site. The presence of bisecting GlcNAc on released N-glycans was detected by mass spectrometry (LC-ESI-qTOF-MS/MS) in serous ovarian cancer cells upon DNA methyltransferase inhibition. The regulatory impact of DNA methylation on MGAT3 was further evaluated in 18 TCGA cancer types (n = 6118 samples) and the results indicate an improved overall survival in patients with reduced MGAT3 expression, thereby identifying long-term survivors of high-grade serous ovarian cancers (HGSOC). Epigenetic activation of MGAT3 was also confirmed in basal-like breast cancers sharing similar molecular and genetic features with HGSOC. These results provide novel insights into the epigenetic regulation of MGAT3/bisecting GlcNAc and demonstrate the importance of N-glycosylation in cancer progression.
Collapse
Affiliation(s)
- Reto S Kohler
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Merrina Anugraham
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christina Xiao
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Schoetzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Timm Hettich
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Goetz Schlotterbeck
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Hospital for Women, Department of Gynecology and Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Balmaña M, Duran A, Gomes C, Llop E, López-Martos R, Ortiz MR, Barrabés S, Reis CA, Peracaula R. Analysis of sialyl-Lewis x on MUC5AC and MUC1 mucins in pancreatic cancer tissues. Int J Biol Macromol 2018; 112:33-45. [PMID: 29408556 DOI: 10.1016/j.ijbiomac.2018.01.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) lacks efficient biomarkers. Mucins are glycoproteins that can carry aberrant glycosylation in cancer. Our objective was to identify cancer-related glycan epitopes on MUC1 and MUC5AC mucins in PDAC as potential biomarkers. We have analysed the tumour-associated carbohydrate antigens sialyl-Lewis x (SLex) and sialyl-Tn (STn) on MUC1 and MUC5AC in PDAC tissues. The selected cohort for this study consisted of twenty-one PDAC tissues positive for SLex antigen and three normal pancreas specimens as controls. STn expression was shown in 76% of the PDAC tissues. MUC1 and MUC5AC were detected in 90% of PDAC tissues. We performed in situ proximity ligation assay combining antibodies against mucins and glycan epitopes to identify specific mucin glycoforms. MUC1-SLex and MUC5AC-SLex were found in 68% and 84% respectively, of the mucin expressing PDAC tissues, while STn hardly colocalized with any of the evaluated mucins. Further analysis by Western blot of MUC5AC and SLex in eight PDAC tissue lysates showed that six out of eight cases were positive for both markers. Moreover, immunoprecipitation of MUC5AC from positive PDAC tissues and subsequent SLex immunodetection confirmed the presence of SLex on MUC5AC. Altogether, MUC5AC-SLex glycoform is present in PDAC and can be regarded as potential biomarker.
Collapse
Affiliation(s)
- Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Adrià Duran
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Catarina Gomes
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Raquel López-Martos
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - M Rosa Ortiz
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal; Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar - ICBAS, University of Porto, Porto, Portugal.
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.
| |
Collapse
|
12
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|
13
|
Greville G, McCann A, Rudd PM, Saldova R. Epigenetic regulation of glycosylation and the impact on chemo-resistance in breast and ovarian cancer. Epigenetics 2016; 11:845-857. [PMID: 27689695 DOI: 10.1080/15592294.2016.1241932] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is one of the most fundamental posttranslational modifications in cellular biology and has been shown to be epigenetically regulated. Understanding this process is important as epigenetic therapies such as those using DNA methyltransferase inhibitors are undergoing clinical trials for the treatment of ovarian and breast cancer. Previous work has demonstrated that altered glycosylation patterns are associated with aggressive disease in women presenting with breast and ovarian cancer. Moreover, the tumor microenvironment of hypoxia results in globally altered DNA methylation and is associated with aggressive cancer phenotypes and chemo-resistance, a feature integral to many cancers. There is sparse knowledge on the impact of these therapies on glycosylation. Moreover, little is known about the efficacy of DNA methyltransferase inhibitors in hypoxic tumors. In this review, we interrogate the impact that hypoxia and epigenetic regulation has on cancer cell glycosylation in relation to resultant tumor cell aggressiveness and chemo-resistance.
Collapse
Affiliation(s)
- Gordon Greville
- a NIBRT GlycoScience Group , The National Institute for Bioprocessing Research and Training , Mount Merrion, Blackrock, Dublin , Ireland
| | - Amanda McCann
- b UCD School of Medicine, College of Health and Agricultural Science, University College Dublin , UCD, Belfield, Dublin , Ireland.,c UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , UCD, Belfield, Dublin , Ireland
| | - Pauline M Rudd
- a NIBRT GlycoScience Group , The National Institute for Bioprocessing Research and Training , Mount Merrion, Blackrock, Dublin , Ireland
| | - Radka Saldova
- a NIBRT GlycoScience Group , The National Institute for Bioprocessing Research and Training , Mount Merrion, Blackrock, Dublin , Ireland
| |
Collapse
|
14
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
15
|
Chachadi VB, Bhat G, Cheng PW. Glycosyltransferases involved in the synthesis of MUC-associated metastasis-promoting selectin ligands. Glycobiology 2015; 25:963-75. [PMID: 25972125 DOI: 10.1093/glycob/cwv030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
The sialyl Lewis a and x (sLe(a/x)) antigens frequently displayed on the surface of tumor cells are involved in metastasis. Their synthesis has been attributed to altered expression of selective glycosyltransferases. Identification of these glycosyltransferases and the glycoproteins that carry these carbohydrate antigens should help advance our understanding of selectin-mediated cancer metastasis. In this study, quantitative real-time polymerase chain reaction analysis coupled with in situ proximity ligation assay and small interference RNA treatment shows involvement of β3galactosyltransferase-V in the synthesis of MUC16-associated sLe(a) in H292 cells. Also, α3fucosyltransferase-V, which is absent in BEAS-2B human immortalized bronchial epithelial cells and A549 lung carcinoma cells, participates in the synthesis of MUC1-associated sLe(x) in CFT1 human immortalized bronchial epithelial cells and H292 lung carcinoma cells. Neither selectin ligand is found on MUC1 in BEAS-2B and A549 cells. Knockdown of either enzyme suppresses migration, and selectin tethering and rolling properties of H292 cells under dynamic flow as determined by wound healing and parallel plate flow chamber assays, respectively. These results provide insights into how the synthesis of mucin-associated selectin ligands and the metastatic properties of cancer cells can be regulated by selective glycosyltransferases that work on mucins. They may help develop novel anticancer drugs.
Collapse
Affiliation(s)
- Vishwanath B Chachadi
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA Department of Biochemistry and Molecular Biology, College of Medicine
| | - Ganapati Bhat
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA Department of Biochemistry and Molecular Biology, College of Medicine
| | - Pi-Wan Cheng
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA Department of Biochemistry and Molecular Biology, College of Medicine Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
16
|
Glavey SV, Huynh D, Reagan MR, Manier S, Moschetta M, Kawano Y, Roccaro AM, Ghobrial IM, Joshi L, O'Dwyer ME. The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev 2015; 29:269-79. [PMID: 25636501 DOI: 10.1016/j.blre.2015.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Abstract
Glycosylation is a frequent post-translational modification which results in the addition of carbohydrate determinants, "glycans", to cell surface proteins and lipids. These glycan structures form the "glycome" and play an integral role in cell-cell and cell-matrix interactions through modulation of adhesion and cell trafficking. Glycosylation is increasingly recognized as a modulator of the malignant phenotype of cancer cells, where the interaction between cells and the tumor micro-environment is altered to facilitate processes such as drug resistance and metastasis. Changes in glycosylation of cell surface adhesion molecules such as selectin ligands, integrins and mucins have been implicated in the pathogenesis of several solid and hematological malignancies, often with prognostic implications. In this review we focus on the functional significance of alterations in cancer cell glycosylation, in terms of cell adhesion, trafficking and the metastatic cascade and provide insights into the prognostic and therapeutic implications of recent findings in this fast-evolving niche.
Collapse
Affiliation(s)
- Siobhan V Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Lokesh Joshi
- Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Michael E O'Dwyer
- Glycoscience Research Group, National University of Ireland, Galway, Ireland; Department of Hematology National University of Ireland, Galway and Galway University Hospital, Ireland.
| |
Collapse
|
17
|
Regulations of glycolipid: XI. glycosyltransferase (GSL: GLTs) genes involved in SA-LeX and related GSLs biosynthesis in carcinoma cells by Biosimilar apoptotic agents: potential anticancer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:329-54. [PMID: 25408353 DOI: 10.1007/978-3-319-11280-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
18
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|
19
|
Trinchera M, Zulueta A, Caretti A, Dall'Olio F. Control of Glycosylation-Related Genes by DNA Methylation: the Intriguing Case of the B3GALT5 Gene and Its Distinct Promoters. BIOLOGY 2014; 3:484-97. [PMID: 25256425 PMCID: PMC4192623 DOI: 10.3390/biology3030484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022]
Abstract
Glycosylation is a metabolic pathway consisting of the enzymatic modification of proteins and lipids through the stepwise addition of sugars that gives rise to glycoconjugates. To determine the full complement of glycoconjugates that cells produce (the glycome), a variety of genes are involved, many of which are regulated by DNA methylation. The aim of the present review is to briefly describe some relevant examples of glycosylation-related genes whose DNA methylation has been implicated in their regulation and to focus on the intriguing case of a glycosyltransferase gene (B3GALT5). Aberrant promoter methylation is frequently at the basis of their modulation in cancer, but in the case of B3GALT5, at least two promoters are involved in regulation, and a complex interplay is reported to occur between transcription factors, chromatin remodelling and DNA methylation of typical CpG islands or even of other CpG dinucleotides. Transcription of the B3GALT5 gene underwent a particular evolutionary fate, so that promoter hypermethylation, acting on one transcript, and hypomethylation of other sequences, acting on the other, cooperate on one gene to obtain full cancer-associated silencing. The findings may also help in unravelling the complex origin of serum CA19.9 antigen circulating in some patients.
Collapse
Affiliation(s)
- Marco Trinchera
- Department of Medicine Clinical and Experimental (DMCS), University of Insubria, 21100 Varese, Italy.
| | - Aida Zulueta
- Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milano, Italy.
| | - Anna Caretti
- Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milano, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
20
|
Chachadi VB, Ali MF, Cheng PW. Prostatic cell-specific regulation of the synthesis of MUC1-associated sialyl Lewis a. PLoS One 2013; 8:e57416. [PMID: 23451223 PMCID: PMC3579856 DOI: 10.1371/journal.pone.0057416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/24/2013] [Indexed: 11/21/2022] Open
Abstract
Sialyl Lewis antigens are selectin ligands involved in leukocyte trafficking and cancer metastasis. Biosynthesis of these selectin ligands occurs by the sequential actions of several glycosyltransferases in the Golgi apparatus following synthesis of the protein backbone in the endoplasmic reticulum. In this study, we examine how the synthesis of sialyl Lewis a (sLea) is regulated in prostatic cells and identify a mucin that carries this glycotope. We treat human prostatic cells including one normal and three cancerous cells with histone deacetylase inhibitors, valproic acid, tricostatin A (TSA), and suberoylanilide hydroxamic acid (SAHA), and then monitor the expression of sLea. We have found that SAHA enhances the production of sLea in normal prostatic RWPE-1 cells but not prostatic cancer cells. Employing siRNA technology and co-immunoprecipitation, we show that the sLea is associated with MUC1, which is confirmed by confocal immunofluorescence microscopy and proximity ligation assay. The SAHA-induced production of sLea in RWPE-1 cells is resulted from upregulation of B3GALT1 gene via enhancement of acetylated histone-3 and histone-4. Interestingly, PC3 and LNCaP C-81 cells do not produce detectable amounts of sLea despite expressing high levels of B3GALT1. However, the MUC1-associated sLea is generated in these cells after introduction of MUC1 cDNA. We conclude that the synthesis of sLea is controlled by not only peptide backbone of the glycoprotein but also glycoprotein-specific glycosyltransferases involved in the synthesis of sLea. Further, the SAHA induction of this selectin ligand in normal prostatic cells may pose a potentially serious side effect of this drug recently approved by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Vishwanath B. Chachadi
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mohamed F. Ali
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pi-Wan Cheng
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
21
|
Mi R, Song L, Wang Y, Ding X, Zeng J, Lehoux S, Aryal RP, Wang J, Crew VK, van Die I, Chapman AB, Cummings RD, Ju T. Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing tn antigen. J Biol Chem 2012; 287:41523-33. [PMID: 23035125 DOI: 10.1074/jbc.m112.371989] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cosmc is the specific molecular chaperone in the endoplasmic reticulum for T-synthase, a Golgi β3-galactosyltransferase that generates the core 1 O-glycan, Galβ1-3GalNAcα-Ser/Thr, in glycoproteins. Dysfunctional Cosmc results in the formation of inactive T-synthase and consequent expression of the Tn antigen (GalNAcα1-Ser/Thr), which is associated with several human diseases. However, the molecular regulation of expression of Cosmc, which is encoded by a single gene on Xq24, is poorly understood. Here we show that epigenetic silencing of Cosmc through hypermethylation of its promoter leads to loss of Cosmc transcripts in Tn4 cells, an immortalized B cell line from a male patient with a Tn-syndrome-like phenotype. These cells lack T-synthase activity and express the Tn antigen. Treatment of cells with 5-aza-2'-deoxycytidine causes restoration of Cosmc transcripts, restores T-synthase activity, and reduces Tn antigen expression. Bisulfite sequencing shows that CG dinucleotides in the Cosmc core promoter are hypermethylated. Interestingly, several other X-linked genes associated with glycosylation are not silenced in Tn4 cells, and we observed no correlation of a particular DNA methyltransferase to aberrant methylation of Cosmc in these cells. Thus, hypermethylation of the Cosmc promoter in Tn4 cells is relatively specific. Epigenetic silencing of Cosmc provides another mechanism underlying the abnormal expression of the Tn antigen, which may be important in understanding aberrant Tn antigen expression in human diseases, including IgA nephropathy and cancer.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Coordinated roles of ST3Gal-VI and ST3Gal-IV sialyltransferases in the synthesis of selectin ligands. Blood 2012; 120:1015-26. [PMID: 22700726 DOI: 10.1182/blood-2012-04-424366] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Binding of selectins to their glycan ligands is a prerequisite for successful leukocyte trafficking. During synthesis and transport through the secretory pathway, selectin ligands are constructed with the participation of one or more sialyltransferases of the ST3Gal subfamily. Previous studies established that ST3Gal-IV only partially contributes to selectin ligand formation, indicating that other ST3Gal-sialyltransferases are involved. By generating and analyzing St3gal6-null mice and St3gal4/St3gal6 double-deficient mice, in the present study, we found that binding of E- and P-selectin to neutrophils and L-selectin binding to lymph node high endothelial venules is reduced in the absence of ST3Gal-VI and to a greater extent in double-deficient mice. In an ex vivo flow chamber assay, P- and E-selectin-dependent leukocyte rolling was mildly reduced in St3gal6-null mice and more severely in double-deficient mice. In inflamed cremaster muscle venules of St3gal6-null mice, we found impaired P-selectin-dependent, but not E-selectin-dependent leukocyte rolling, whereas in double-deficient mice, E-selectin-dependent rolling was almost completely absent. Furthermore, neutrophil recruitment into the inflamed peritoneal cavity and lymphocyte homing to secondary lymphoid organs were impaired in St3gal6-null mice and more severely in double-deficient mice. The results of the present study demonstrate the coordinated participation of both ST3Gal-VI and ST3Gal-IV in the synthesis of functional selectin ligands.
Collapse
|
23
|
Saldova R, McCann A, Rudd PM. Commentary on paper: 5-Aza-2'-deoxycytidine increases sialyl Lewis X on MUC1 by stimulating β-galactoside:α2,3-sialyltransferase 6 gene (Chachadi et al.). Int J Biochem Cell Biol 2012; 44:737. [PMID: 22326622 DOI: 10.1016/j.biocel.2012.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/17/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Radka Saldova
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin 4, Ireland
| | | | | |
Collapse
|
24
|
Caretti A, Sirchia SM, Tabano S, Zulueta A, Dall’Olio F, Trinchera M. DNA methylation and histone modifications modulate the β1,3 galactosyltransferase β3Gal-T5 native promoter in cancer cells. Int J Biochem Cell Biol 2012; 44:84-90. [DOI: 10.1016/j.biocel.2011.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/19/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
|
25
|
Affiliation(s)
- Shou Takashima
- The Noguchi institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shuichi Tsuji
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|