1
|
Abbasi R, Heschuk D, Kim B, Whyard S. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103492. [PMID: 33096213 DOI: 10.1016/j.ibmb.2020.103492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has become a widely used technique of knocking down a gene's expression in insects, but its efficacy in some species is limited by a reduced ability of the cells to take in and disperse the double-stranded RNA (dsRNA) throughout the cytoplasm. While RNA transport proteins such as SID-1 and its orthologues can facilitate dsRNA uptake in some invertebrate species, dsRNA uptake in many insects examined to date appears to be facilitated by clathrin-mediated endocytosis (CME). In this study, we used pharmacological inhibitors and RNAi-mediated knockdown of endocytic genes to provide evidence that CME is the primary means of dsRNA uptake in the mosquito Aedes aegypti. Inhibition of clathrin-mediated endocytosis was sufficient to supress uptake of short (21 nt) interfering RNAs (siRNAs), short (23 nt) hairpin RNAs (shRNAs), and long (>200 nt) dsRNA molecules in Aedes aegypti cultured cells and larvae. In contrast, we observed that short (23 nt) "paperclip" RNAs (pcRNAs), with partially closed ends, efficiently enter cells via a clathrin-independent pathway and effectively facilitate transcript knockdown. This alternative dsRNA structure may prove useful in insects generally considered recalcitrant to RNAi and in insect populations where resistance to RNAi-insecticides may arise through changes in dsRNA uptake mechanisms.
Collapse
Affiliation(s)
- Roohollah Abbasi
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Daniel Heschuk
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Brandon Kim
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Steve Whyard
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
2
|
Identification of Genes Required for Apical Protein Trafficking in Drosophila Photoreceptor Cells. G3-GENES GENOMES GENETICS 2019; 9:4007-4017. [PMID: 31649044 PMCID: PMC6893196 DOI: 10.1534/g3.119.400635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster photoreceptor cells are highly polarized epithelial cells. Their apical membrane is further subdivided into the stalk membrane and the light-sensing rhabdomere. The photo-pigment Rhodopsin1 (Rh1) localizes to the rhabdomere, whereas the apical determinant Crumbs (Crb) is enriched at the stalk membrane. The proteoglycan Eyes shut (Eys) is secreted through the apical membrane into an inter-rhabdomeral space. Rh1, Crb, and Eys are essential for the development of photoreceptor cells, normal vision, and photoreceptor cell survival. Human orthologs of all three proteins have been linked to retinal degenerative diseases. Here, we describe an RNAi-based screen examining the importance of 237 trafficking-related genes in apical trafficking of Eys, Rh1, and Crb. We found 28 genes that have an effect on the localization and/or levels of these apical proteins and analyzed several factors in more detail. We show that the Arf GEF protein Sec71 is required for biosynthetic traffic of both apical and basolateral proteins, that the exocyst complex and the microtubule-based motor proteins dynein and kinesin promote the secretion of Eys and Rh1, and that Syntaxin 7/Avalanche controls the endocytosis of Rh1, Eys, and Crb.
Collapse
|
3
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 2018; 13:e0201849. [PMID: 30092086 PMCID: PMC6084943 DOI: 10.1371/journal.pone.0201849] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022] Open
Abstract
The cellular uptake of dsRNA after dietary exposure is critical for RNAi efficiency; however, the mechanism of its uptake in many insects remains to be understood. In this study, we evaluated the roles of the endocytic pathway genes Clathrin heavy chain (Chc), Clathrin adaptor protein AP50, ADP ribosylation factor-like 1 (Arf72A), Vacuolar H+ATPase 16 kDa subunit (Vha16), and small GTPase Rab7 and putative sid-1-like genes (silA and silC) in RNAi response in western corn rootworm (WCR) using a two-stage dsRNA exposure bioassay. Silencing of Chc, Vha16, and AP50 led to a significant decrease in the effects of laccase2 dsRNA reporter, indicating that these genes are involved in RNAi response. However, the knockdown of either Arf72A or Rab7 did not suppress the response to laccase2 dsRNA. The silencing of the silC gene did not lead to a significant reduction in mortality or increase in the expression of V-ATPase A reporter. While the silencing of the silA gene significantly decreased insect mortality, significant changes in V-ATPase A expression were not detected. These results suggest that clathrin-dependent endocytosis is a biological mechanism that plays an important role during RNAi response in WCR adults. The fact that no definitive support for the roles of silA or silC in RNAi response was obtained support the idea that RNAi response varies greatly in different insect species, demanding additional studies focused on elucidating their involvement in this mechanism.
Collapse
|
5
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
6
|
Schopf K, Huber A. Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol 2016; 96:391-401. [PMID: 27964885 DOI: 10.1016/j.ejcb.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022] Open
Abstract
Membrane protein trafficking occurs throughout the lifetime of neurons and includes the initial protein synthesis and anterograde transport to the plasma membrane as well as internalization, degradation, and recycling of plasma membrane proteins. Defects in protein trafficking can result in neuronal degeneration and underlie blinding diseases such as retinitis pigmentosa as well as other neuronal disorders. Drosophila photoreceptor cells have emerged as a model system for identifying the components and mechanisms involved in membrane protein trafficking in neurons. Here we summarize the current knowledge about trafficking of three Drosophila phototransduction proteins, the visual pigment rhodopsin and the two light-activated ion channels TRP (transient receptor potential) and TRPL (TRP-like). Despite some common requirements shared by rhodopsin and TRP, details in the trafficking of these proteins differ considerably, suggesting the existence of several trafficking pathways for these photoreceptor proteins.
Collapse
Affiliation(s)
- Krystina Schopf
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany
| | - Armin Huber
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany.
| |
Collapse
|
7
|
Yoon JS, Shukla JN, Gong ZJ, Mogilicherla K, Palli SR. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:78-88. [PMID: 27687845 DOI: 10.1016/j.ibmb.2016.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 05/12/2023]
Abstract
RNA interference (RNAi) is a useful reverse genetics tool for investigation of gene function as well as for practical applications in many fields including medicine and agriculture. RNAi works very well in coleopteran insects including the Colorado potato beetle (CPB), Leptinotarsa decemlineata. We used a cell line (Lepd-SL1) developed from CPB to identify genes that play key roles in RNAi. We screened 50 genes with potential functions in RNAi by exposing Lepd-SL1 cells to dsRNA targeting one of the potential RNAi pathway genes followed by incubation with dsRNA targeting inhibitor of apoptosis (IAP, silencing of this gene induces apoptosis). Out of 50 genes tested, silencing of 29 genes showed an effect on RNAi. Silencing of five genes (Argonaute-1, Argonaute-2a, Argonaute-2b, Aubergine and V-ATPase 16 kDa subunit 1, Vha16) blocked RNAi suggesting that these genes are essential for functioning of RNAi in Lepd-SL1 cells. Interestingly, Argonaute-1 and Aubergine which are known to function in miRNA and piRNA pathways respectively are also critical to siRNA pathway. Using 32P labeled dsRNA, we showed that these miRNA and piRNA Argonautes but not Argonaute-2 are required for processing of dsRNA to siRNA. Transfection of pIZT/V5 constructs containing these five genes into Sf9 cells (the cells where RNAi does not work well) showed that expression of all genes tested, except the Argonaute-2a, improved RNAi in these cells. Results from Vha16 gene silencing and bafilomycin-A1 treatment suggest that endosomal escape plays an important role in dsRNA-mediated RNAi in Lepd-SL1 cells.
Collapse
Affiliation(s)
- June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | | | - Zhong Jun Gong
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | | | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
8
|
Zhang SX, Sanders E, Fliesler SJ, Wang JJ. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res 2014; 125:30-40. [PMID: 24792589 DOI: 10.1016/j.exer.2014.04.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/02/2014] [Accepted: 04/18/2014] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is the primary intracellular organelle responsible for protein and lipid biosynthesis, protein folding and trafficking, calcium homeostasis, and several other vital processes in cell physiology. Disturbance in ER function results in ER stress and subsequent activation of the unfolded protein response (UPR). The UPR up-regulates ER chaperones, reduces protein translation, and promotes clearance of cytotoxic misfolded proteins to restore ER homeostasis. If this vital process fails, the cell will be signaled to enter apoptosis, resulting in cell death. Sustained ER stress also can trigger an inflammatory response and exacerbate oxidative stress, both of which contribute synergistically to tissue damage. Studies performed over the past decade have implicated ER stress in a broad range of human diseases, including neurodegenerative diseases, cancer, diabetes, and vascular disorders. Several of these diseases also entail retinal dysfunction and degeneration caused by injury to retinal neurons and/or to the blood vessels that supply retinal cells with nutrients, trophic and homeostatic factors, oxygen, and other essential molecules, as well as serving as a conduit for removal of waste products and potentially toxic substances from the retina. Collectively, such injuries represent the leading cause of blindness world-wide in all age groups. Herein, we summarize recent progress on the study of ER stress and UPR signaling in retinal biology and discuss the molecular mechanisms and the potential clinical applications of targeting ER stress as a new therapeutic approach to prevent and treat neuronal degeneration in the retina.
Collapse
Affiliation(s)
- Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA.
| | - Emily Sanders
- Department of Medicine, Endocrinology and Diabetes, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| | - Joshua J Wang
- Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA
| |
Collapse
|
9
|
Xiong B, Bellen HJ. Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci 2013; 36:652-60. [PMID: 24012059 DOI: 10.1016/j.tins.2013.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 11/16/2022]
Abstract
Rhodopsins (Rh) are G protein-coupled receptors that function as light-sensors in photoreceptors. In humans, Rh mutations cause retinitis pigmentosa (RP), a degenerative disease that ultimately results in blindness. Studies in Drosophila have provided many insights into basic Rh biology and have identified pathways that lead to retinal degeneration. It has been shown that, because Rh is very abundant in photoreceptors, its accumulation in numerous organelles induces severe stress and results in degeneration of these cells. Moreover, genetic lesions that affect proper activation of membrane-bound Rh lead to disruption in Ca(2+) homeostasis which also causes photoreceptor degeneration. We review here the molecular signals involved in Rh homeostasis and the mechanisms underlying retinal degeneration in flies, and discuss possible links to human diseases.
Collapse
Affiliation(s)
- Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
10
|
Negative regulation of the novel norpA(P24) suppressor, diehard4, in the endo-lysosomal trafficking underlies photoreceptor cell degeneration. PLoS Genet 2013; 9:e1003559. [PMID: 23754968 PMCID: PMC3674991 DOI: 10.1371/journal.pgen.1003559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 04/24/2013] [Indexed: 12/16/2022] Open
Abstract
Rhodopsin has been used as a prototype system to investigate G protein-coupled receptor (GPCR) internalization and endocytic sorting mechanisms. Failure of rhodopsin recycling upon light activation results in various degenerative retinal diseases. Accumulation of internalized rhodopsin in late endosomes and the impairment of its lysosomal degradation are associated with unregulated cell death that occurs in dystrophies. However, the molecular basis of rhodopsin accumulation remains elusive. We found that the novel norpAP24 suppressor, diehard4, is responsible for the inability of endo-lysosomal rhodopsin trafficking and retinal degeneration in Drosophila models of retinal dystrophies. We found that diehard4 encodes Osiris 21. Loss of its function suppresses retinal degeneration in norpAP24, rdgC306, and trp1, but not in rdgB2, suggesting a common cause of photoreceptor death. In addition, the loss of Osiris 21 function shifts the membrane balance between late endosomes and lysosomes as evidenced by smaller late endosomes and the proliferation of lysosomal compartments, thus facilitating the degradation of endocytosed rhodopsin. Our results demonstrate the existence of negative regulation in vesicular traffic between endosomes and lysosomes. We anticipate that the identification of additional components and an in-depth description of this specific molecular machinery will aid in therapeutic interventions of various retinal dystrophies and GPCR-related human diseases. Malfunctioning of phototransduction is the major cause of human blindness. Without functional phototransduction, rhodopsin-1, the major visual pigment, is rapidly endocytosed and accumulated in late endosomes. Impaired lysosomal delivery of endocytosed rhodopsin and its degradation has been reported to trigger progressive and light-dependent retinal degeneration in Drosophila models. It is intriguing why endocytosed rhodopsin accumulates in late endosomes instead of being delivered to lysosomes for degradation. Is this attributable to a saturation of rhodopsin endocytosis, which impedes the delivery capacity of the cell? To investigate the underlying mechanisms of rhodopsin accumulation in late endosomes, we used a suppressor of phototransduction mutants, which was identified previously from our unbiased genetic screen. This suppressor, called diehard4, shifts the membrane balance between late endosomes and lysosomes, resulting in the facilitated degradation of endocytosed rhodopsin. Our results clearly demonstrate that a previously unknown mechanism of negative regulation is actively engaged in vesicular traffic between endosomes and lysosomes in fly photoreceptors. We showed that eliminating such blockage alone was enough to rescue retinal degeneration in phototransduction mutants. From these results, we anticipate that the identification of additional components and an in-depth description of this molecular machinery will aid in therapeutic interventions of various retinal dystrophies and neurodegenerative disorders.
Collapse
|
11
|
Afshar K, Dube FF, Najafabadi HS, Bonneil E, Thibault P, Salavati R, Bede JC. Insights into the insect salivary gland proteome: diet-associated changes in caterpillar labial salivary proteins. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:351-366. [PMID: 23353727 DOI: 10.1016/j.jinsphys.2013.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
The primary function of salivary glands is fluid and protein secretion during feeding. Compared to mammalian systems, little is known about salivary protein secretion processes and the effect of diet on the salivary proteome in insect models. Therefore, the effect of diet nutritional quality on caterpillar labial salivary gland proteins was investigated using an unbiased global proteomic approach by nanoLC/ESI/tandem MS. Caterpillars of the beet armyworm, Spodoptera exigua Hübner, were fed one of three diets: an artificial diet containing their self-selected protein to carbohydrate (p:c) ratio (22p:20c), an artificial diet containing a higher nutritional content but the same p:c ratio (33p:30c) or the plant Medicago truncatula Gaertn. As expected, most identified proteins were associated with secretory processes and not influenced by diet. However, some diet-specific differences were observed. Nutrient stress-associated proteins, such as peptidyl-propyl cis-trans isomerase and glucose-regulated protein94/endoplasmin, and glyceraldehyde 3-phosphate dehydrogenase were identified in the labial salivary glands of caterpillars fed nutritionally poor diets, suggesting a link between nutritional status and vesicular exocytosis. Heat shock proteins and proteins involved in endoplasmic reticulum-associated protein degradation were also abundant in the labial salivary glands of these caterpillars. In comparison, proteins associated with development, such as arylphorin, were found in labial salivary glands of caterpillars fed 33p:30c. These results suggest that caterpillars fed balanced or nutritionally-poor diets have accelerated secretion pathways compared to those fed a protein-rich diet.
Collapse
Affiliation(s)
- Khashayar Afshar
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Qc, Canada H9X 3V9.
| | | | | | | | | | | | | |
Collapse
|