1
|
Strandvik B. Is the ENaC Dysregulation in CF an Effect of Protein-Lipid Interaction in the Membranes? Int J Mol Sci 2021; 22:ijms22052739. [PMID: 33800499 PMCID: PMC7962953 DOI: 10.3390/ijms22052739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
While approximately 2000 mutations have been discovered in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), only a small amount (about 10%) is associated with clinical cystic fibrosis (CF) disease. The discovery of the association between CFTR and the hyperactive epithelial sodium channel (ENaC) has raised the question of the influence of ENaC on the clinical CF phenotype. ENaC disturbance contributes to the pathological secretion, and overexpression of one ENaC subunit, the β-unit, can give a CF-like phenotype in mice with normal acting CFTR. The development of ENaC channel modulators is now in progress. Both CFTR and ENaC are located in the cell membrane and are influenced by its lipid configuration. Recent studies have emphasized the importance of the interaction of lipids and these proteins in the membranes. Linoleic acid deficiency is the most prevailing lipid abnormality in CF, and linoleic acid is an important constituent of membranes. The influence on sodium excretion by linoleic acid supplementation indicates that lipid-protein interaction is of importance for the clinical pathophysiology in CF. Further studies of this association can imply a simple clinical adjuvant in CF therapy.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, 14183 Stockholm, Sweden
| |
Collapse
|
2
|
Measurement of ion fluxes across epithelia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:1-11. [DOI: 10.1016/j.pbiomolbio.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
|
3
|
Bicarbonate in cystic fibrosis. J Cyst Fibros 2017; 16:653-662. [PMID: 28732801 DOI: 10.1016/j.jcf.2017.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF, mucoviscidosis) is caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), which is a chloride and bicarbonate channel necessary for fluid secretion and extracellular alkalization. For a long time, research concentrated on abnormal Cl- and Na+ transport, but neglected bicarbonate as a crucial factor in CF. METHODS The present short review reports early findings as well as recent insights into the role of CFTR for bicarbonate transport and its defects in CF. RESULTS The available data indicate impaired bicarbonate transport not only in pancreas, intestine, airways, and reproductive organs, but also in salivary glands, sweat duct and renal tubular epithelial cells. Defective bicarbonate transport is closely related to the impaired mucus properties and mucus blocking in secretory organs of CF patients, causing the life threatening lung disease. CONCLUSIONS Apart from the devastating lung disease, abrogated bicarbonate transport also leads to many other organ dysfunctions, which are outlined in the present review.
Collapse
|
4
|
Zając M, Lewenstam A, Dolowy K. Multi-electrode system for measurement of transmembrane ion-fluxes through living epithelial cells. Bioelectrochemistry 2017. [PMID: 28633068 DOI: 10.1016/j.bioelechem.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cystic Fibrosis (CF) is the most common fatal human genetic disease. It is caused by the defect in a single anion channel protein which affects ion and water transport across the epithelial tissue. A flat multi-electrode platform of diameter 12mm, allowing for measurement of four ions: sodium, potassium, hydrogen and chloride by exchangeable/replaceable ion-selective electrodes is described. The measurement is possible owing to the architecture of the platform which accommodates all the electrodes and inlets/outlets. The platform fits to the cup and operates in a small volume of the solution bathing the living epithelial cell layer (membrane) deposited on a porous support of the cup, which allows for effective monitoring of ion concentration changes. By applying two multi-electrode platforms, it is possible to measure the ion transmembrane fluxes. The inlet and outlet tubes in the platforms allow for on-fly change of the calibrants, ion-concentration changes and ion channel blockers. Using different ion-concentration gradients and blockers of ion-transporting molecules we show for the first time that sodium ions flow from the basolateral to apical face of the cell monolayer via a paracellular route and return also via a transcellular one, while chloride anions are transported back and forth exclusively via a transcellular route.
Collapse
Affiliation(s)
- Mirosław Zając
- Warsaw University of Life Sciences - SGGW, Department of Biophysics, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Andrzej Lewenstam
- Åbo Akademi University, Centre for Process Analytical Chemistry and Sensor Technology (ProSens), Johan Gadolin Process Chemistry Centre, Biskopsgatan 8, 20500 Åbo-Turku, Finland; AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Krzysztof Dolowy
- Warsaw University of Life Sciences - SGGW, Department of Biophysics, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
5
|
Evans TIA, Joo NS, Keiser NW, Yan Z, Tyler SR, Xie W, Zhang Y, Hsiao JJ, Cho HJ, Wright ME, Wine JJ, Engelhardt JF. Glandular Proteome Identifies Antiprotease Cystatin C as a Critical Modulator of Airway Hydration and Clearance. Am J Respir Cell Mol Biol 2016; 54:469-81. [PMID: 26334941 DOI: 10.1165/rcmb.2015-0090oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel lead to viscous secretions from submucosal glands that cannot be properly hydrated and cleared by beating cilia in cystic fibrosis (CF) airways. The mechanisms by which CFTR, and the predominant epithelial sodium channel (ENaC), control the hydration and clearance of glandular secretions remain unclear. We used a proteomics approach to characterize the proteins contained in CF and non-CF submucosal gland fluid droplets and found that differentially regulated proteases (cathepsin S and H) and their antiprotease (cystatin C) influenced the equilibration of fluid on the airway surface and tracheal mucociliary clearance (MCC). Contrary to prevailing models of airway hydration and clearance, cystatin C, or raising the airway surface liquid (ASL) pH, inhibited cathepsin-dependent ENaC-mediated fluid absorption and raised the height of ASL, and yet decreased MCC velocity. Importantly, coupling of both CFTR and ENaC activities were required for effective MCC and for effective ASL height equilibration after volume challenge. Cystatin C-inhibitable cathepsins controlled initial phases of ENaC-mediated fluid absorption, whereas CFTR activity was required to prevent ASL dehydration. Interestingly, CF airway epithelia absorbed fluid more slowly owing to reduced cysteine protease activity in the ASL but became abnormally dehydrated with time. Our findings demonstrate that, after volume challenge, pH-dependent protease-mediated coupling of CFTR and ENaC activities are required for rapid fluid equilibration at the airway surface and for effective MCC. These findings provide new insights into how glandular fluid secretions may be equilibrated at the airway surface and how this process may be impaired in CF.
Collapse
Affiliation(s)
| | - Nam Soo Joo
- 2 Stanford University, Cystic Fibrosis Research Laboratory and Psychology Department, Stanford, California
| | | | - Ziying Yan
- 1 Departments of Anatomy and Cell Biology and
| | | | | | | | - Jordy J Hsiao
- 3 Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Hyung-Ju Cho
- 2 Stanford University, Cystic Fibrosis Research Laboratory and Psychology Department, Stanford, California
| | - Michael E Wright
- 3 Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Jeffrey J Wine
- 2 Stanford University, Cystic Fibrosis Research Laboratory and Psychology Department, Stanford, California
| | | |
Collapse
|
6
|
Sasamoto K, Niisato N, Taruno A, Marunaka Y. Simulation of Cl(-) Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl(-) Transporter. Front Physiol 2015; 6:370. [PMID: 26779025 PMCID: PMC4688368 DOI: 10.3389/fphys.2015.00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022] Open
Abstract
Transcellular Cl− secretion is, in general, mediated by two steps; (1) the entry step of Cl− into the cytosolic space from the basolateral space across the basolateral membrane by Cl− transporters, such as Na+-K+-2Cl− cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl− from the cytosolic space into the luminal (air) space across the apical membrane via Cl− channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Transcellular Cl− secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl− channels and transporters located at the apical and basolateral membranes in transcellular Cl− secretion, it is still unclear how Cl− channels/transporters contribute to transcellular Cl− secretion and are regulated by various stimuli such as Ca2+ and cAMP. In the present study, we simulate transcellular Cl− secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl− channels/transporters to transcellular Cl− secretion, activity of electro-neutral ion transporters and how Cl− channels/transporters are regulated.
Collapse
Affiliation(s)
- Kouhei Sasamoto
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Naomi Niisato
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan; Department of Health and Sports Sciences, Faculty of Health and Medical Sciences, Kyoto Gakuen UniversityKameoka, Japan; Japan Institute for Food Education and Health, St. Agnes' UniversityKyoto, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan; Japan Institute for Food Education and Health, St. Agnes' UniversityKyoto, Japan; Department of Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan
| |
Collapse
|
7
|
Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015; 72:3637-52. [PMID: 26068443 PMCID: PMC4567929 DOI: 10.1007/s00018-015-1946-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung's mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.
Collapse
Affiliation(s)
- Arunava Ghosh
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - R C Boucher
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
8
|
Choi HC, Kim CSK, Tarran R. Automated acquisition and analysis of airway surface liquid height by confocal microscopy. Am J Physiol Lung Cell Mol Physiol 2015; 309:L109-18. [PMID: 26001773 DOI: 10.1152/ajplung.00027.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
The airway surface liquid (ASL) is a thin-liquid layer that lines the luminal side of airway epithelia. ASL contains many molecules that are involved in primary innate defense in the lung. Measurement of ASL height on primary airway cultures by confocal microscopy is a powerful tool that has enabled researchers to study ASL physiology and pharmacology. Previously, ASL image acquisition and analysis were performed manually. However, this process is time and labor intensive. To increase the throughput, we have developed an automatic ASL measurement technique that combines a fully automated confocal microscope with novel automatic image analysis software that was written with image processing techniques derived from the computer science field. We were able to acquire XZ ASL images at the rate of ∼ 1 image/s in a reproducible fashion. Our automatic analysis software was able to analyze images at the rate of ∼ 32 ms/image. As proofs of concept, we generated a time course for ASL absorption and a dose response in the presence of SPLUNC1, a known epithelial sodium channel inhibitor, on human bronchial epithelial cultures. Using this approach, we determined the IC50 for SPLUNC1 to be 6.53 μM. Furthermore, our technique successfully detected a difference in ASL height between normal and cystic fibrosis (CF) human bronchial epithelial cultures and detected changes in ATP-stimulated Cl(-)/ASL secretion. We conclude that our automatic ASL measurement technique can be applied for repeated ASL height measurements with high accuracy and consistency and increased throughput.
Collapse
Affiliation(s)
- Hyun-Chul Choi
- Department of Electronic Engineering, Yeungnam University, Kyungsan, Kyungbuk, South Korea; and
| | - Christine Seul Ki Kim
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Almaça J, Faria D, Sousa M, Uliyakina I, Conrad C, Sirianant L, Clarke L, Martins J, Santos M, Heriché JK, Huber W, Schreiber R, Pepperkok R, Kunzelmann K, Amaral M. High-Content siRNA Screen Reveals Global ENaC Regulators and Potential Cystic Fibrosis Therapy Targets. Cell 2013; 154:1390-400. [DOI: 10.1016/j.cell.2013.08.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/08/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023]
|
10
|
Schoenberger M, Althaus M. Novel small molecule epithelial sodium channel inhibitors as potential therapeutics in cystic fibrosis – a patent evaluation. Expert Opin Ther Pat 2013; 23:1383-9. [DOI: 10.1517/13543776.2013.829454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 2013; 195:4013-9. [PMID: 23836869 DOI: 10.1128/jb.00339-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P. aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmonary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopolysaccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These factors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or nonfunctional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmembrane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-altering virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.
Collapse
|