1
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria play a central role in several important cellular processes such as energy production, apoptosis, fatty acid catabolism, calcium regulation, and cellular stress response. Multiple nuclear transcription factors have been reported for their role in the regulation of mitochondrial gene expression. More recently, the role of the forkhead family of transcription factors in various mitochondrial pathways has been reported. Among them, FOXO1, FOXO3a, FOXG1, and FOXM1 have been reported to localize to the mitochondria, of which the first two have been observed to bind to the mitochondrial D-loop. This suggests an important role for forkhead transcription factors in the direct regulation of the mitochondrial genome and function. Forkheads such as FOXO3a, FOXO1, and FOXM1 are involved in the cellular response to oxidative stress, hypoxia, and nutrient limitation. Several members of the forkhead family of transcription factors are also involved in the regulation of nuclear-encoded genes associated with the mitochondrial pathway of apoptosis, respiration, mitochondrial dynamics, and homeostasis.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Meshkini A, Sistanipour E, Oveisi H, Asoodeh A. Induction of osteogenesis in bone tumour cells by purine-conjugated zinc-hydroxyapatite. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.20.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to improve the biocompatibility and osteogenic property of hydroxyapatite (HAP). So HAP nanoparticles were doped with zinc (Zn), and their surface was modified with a purine nucleotide, guanosine 5′-triphosphate (GTP). GTP-loaded nanoparticles (GTP@ZnHAP) were characterised by field emission scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, zeta potential and ultraviolet–visible spectroscopy. Biological experiments revealed that GTP@ZnHAP nanoparticles were internalised by the cells, inhibiting tumour cell (osteoblast-like cells, Saos-2) expansion with an efficiency more than that observed for ZnHAP nanoparticles and GTP alone. Furthermore, Saos-2 cells were committed to differentiate into the normal osteoblast cells under the influence of GTP@ZnHAP nanoparticles demonstrated by the quantitative assessment of bone-related protein expression (Runx2 and osteocalcin) and cell morphological changes. Moreover, high-performance liquid chromatography analyses disclosed a significant enhancement of intracellular GTP content in GTP@ZnHAP-treated cells, proposing perturbation of intracellular nucleotide equilibrium during the process of osteogenesis induced by GTP@ZnHAP nanoparticles. Overall, GTP@ZnHAP exhibits a better synergistic effect on the modulation of cell growth and induction of osteogenic differentiation in osteosarcoma cells than ZnHAP nanoparticles and GTP alone do. Therefore, GTP@ZnHAP may be regarded as a promising biomaterial for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elnaz Sistanipour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Oveisi
- Department of Materials and Polymer Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Abstract
Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1's deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-1α (PGC-1α) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1's role in caloric restriction and impacts on longevity. The notion of Sirt1's regulation of PGC-1α activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1's regulation of mitochondrial biogenesis and turnover, in relation to PGC-1α deacetylation and various aspects of cellular physiology and disease.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597,
Singapore
| |
Collapse
|
4
|
Zhang J, Koch I, Gibson LA, Loughery JR, Martyniuk CJ, Button M, Caumette G, Reimer KJ, Cullen WR, Langlois VS. Transcriptomic Responses During Early Development Following Arsenic Exposure in Western Clawed Frogs,Silurana tropicalis. Toxicol Sci 2015; 148:603-17. [DOI: 10.1093/toxsci/kfv207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Zhang J, Cui Z, Feng G, Bao G, Xu G, Sun Y, Wang L, Chen J, Jin H, Liu J, Yang L, Li W. RBM5 and p53 expression after rat spinal cord injury: implications for neuronal apoptosis. Int J Biochem Cell Biol 2015; 60:43-52. [PMID: 25578565 DOI: 10.1016/j.biocel.2014.12.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/02/2014] [Accepted: 12/28/2014] [Indexed: 12/14/2022]
Abstract
RBM5 (RNA-binding motif protein 5), a nuclear RNA binding protein, is known to trigger apoptosis and induce cell cycle arrest by regulating the activity of the tumor suppressor protein p53. However, its expression and function in spinal cord injury (SCI) are still unknown. To investigate whether RBM5 is involved in central nervous system injury and repair, we performed an acute SCI model in adult rats in this study. Our results showed RBM5 was unregulated significantly after SCI, which was accompanied with an increase in the levels of apoptotic proteins such as p53, Bax, and active caspase-3. Immunofluorescent labeling also showed that traumatic SCI induced RBM5 location changes and co-localization with active caspase-3 in neurons. To further probe the role of RBM5, a neuronal cell line PC12 was employed to establish an apoptotic model. Knockdown of RBM5 apparently decreased the level of p53 as well as active caspase-3, demonstrating its pro-apoptotic role in neurons by regulating expressions of p53 and caspase-3. Taken together, our findings indicate that RBM5 promotes neuronal apoptosis through modulating p53 signaling pathway following SCI.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China.
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Lingling Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Huricha Jin
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Jian Liu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Longfei Yang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| | - Weidong Li
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
|
7
|
Melboucy-Belkhir S, Pradère P, Tadbiri S, Habib S, Bacrot A, Brayer S, Mari B, Besnard V, Mailleux A, Guenther A, Castier Y, Mal H, Crestani B, Plantier L. Forkhead Box F1 represses cell growth and inhibits COL1 and ARPC2 expression in lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 2014; 307:L838-47. [DOI: 10.1152/ajplung.00012.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant expression of master phenotype regulators or alterations in their downstream pathways in lung fibroblasts may play a central role in idiopathic pulmonary fibrosis (IPF). Interrogating IPF fibroblast transcriptome datasets, we identified Forkhead Box F1 (FOXF1), a DNA-binding protein required for lung development, as a candidate actor in IPF. Thus we determined FOXF1 expression levels in fibroblasts cultured from normal or IPF lungs in vitro, and explored FOXF1 functions in these cells using transient and stable loss-of-function and gain-of-function models. FOXF1 mRNA and protein were expressed at higher levels in IPF fibroblasts compared with normal fibroblasts (mRNA: +44%, protein: +77%). Immunohistochemistry showed FOXF1 expression in nuclei of bronchial smooth muscle cells, endothelial cells, and lung fibroblasts including fibroblastic foci of IPF lungs. In normal lung fibroblasts, FOXF1 repressed cell growth and expression of collagen-1 (COL1) and actin-related protein 2/3 complex, subunit 2 (ARPC2). ARPC2 knockdown inhibited cell growth and COL1 expression, consistent with FOXF1 acting in part through ARPC2 repression. In IPF fibroblasts, COL1 and ARPC2 repression by FOXF1 was blunted, and FOXF1 did not repress growth. FOXF1 expression was induced by the antifibrotic mediator prostaglandin E2 and repressed by the profibrotic cytokine transforming growth factor-β1 in both normal and IPF lung fibroblasts. Ex vivo, FOXF1 knockdown conferred CCL-210 lung fibroblasts the ability to implant in uninjured mouse lungs. In conclusion, FOXF1 functions and regulation were consistent with participation in antifibrotic pathways. Alterations of pathways downstream of FOXF1 may participate to fibrogenesis in IPF fibroblasts.
Collapse
Affiliation(s)
| | - Pauline Pradère
- INSERM UMR1152, Labex Inflamex, Paris, France
- Assistance-Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, DHU FIRE, Service de Pneumologie A, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | | | | | | | | | - Bernard Mari
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Valbonne, France
| | | | | | - Andreas Guenther
- University of Giessen Lung Centre, Department of Internal Medicine, Giessen, Germany
- Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Yves Castier
- Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
- Assistance-Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Service de Chirurgie Thoracique et Transplantation Pulmonaire, Paris, France
| | - Hervé Mal
- Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
- Assistance-Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France; and
| | - Bruno Crestani
- INSERM UMR1152, Labex Inflamex, Paris, France
- Assistance-Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, DHU FIRE, Service de Pneumologie A, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | - Laurent Plantier
- INSERM UMR1152, Labex Inflamex, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
- Assistance-Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Service de Physiologie-Explorations Fonctionnelles, Paris, France
| |
Collapse
|
8
|
Caballero-Caballero A, Engel T, Martinez-Villarreal J, Sanz-Rodriguez A, Chang P, Dunleavy M, Mooney CM, Jimenez-Mateos EM, Schindler CK, Henshall DC. Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J Neurochem 2013; 124:749-56. [PMID: 23278239 DOI: 10.1111/jnc.12133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
FOXO3a is member of the Forkhead box class O transcription factors, which functions in diverse pathways to regulate cellular metabolism, differentiation, and apoptosis. FOXO3a shuttles between the cytoplasm and nucleus and may be activated in neurons by stressors, including seizures. A subset of nuclear transcription factors may localize to mitochondria, but whether FOXO3a is present within brain mitochondria is unknown. Here, we report that purified mitochondrial fractions from rat, mouse, and human hippocampus, as well as HT22 hippocampal cells, contain FOXO3a protein. Immunogold electron microscopy supported the presence of FOXO3a within brain mitochondria, and chromatin immunoprecipitation analysis suggested FOXO3a was associated with mitochondrial DNA. Over-expression of a mitochondrially targeted FOXO3a fusion protein in HT22 cells, but not primary hippocampal neurons, conferred superior protection against glutamate toxicity than FOXO3a alone. Mitochondrial FOXO3a levels were reduced in the damaged region of the mouse hippocampus after status epilepticus, while mitochondrial fractions from the hippocampus of patients with temporal lobe epilepsy displayed higher levels of FOXO3a than controls. These results support mitochondria as a site of FOXO3a localization, which may contribute to the overall physiological and pathophysiological functions of this transcription factor.
Collapse
|