1
|
Nieto-Panqueva F, Vázquez-Acevedo M, Barrera-Gómez DF, Gavilanes-Ruiz M, Hamel PP, González-Halphen D. A high copy suppressor screen identifies factors enhancing the allotopic production of subunit II of cytochrome c oxidase. G3 (BETHESDA, MD.) 2025; 15:jkae295. [PMID: 39671566 PMCID: PMC11917479 DOI: 10.1093/g3journal/jkae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Allotopic expression refers to the artificial relocation of an organellar gene to the nucleus. Subunit 2 (Cox2) of cytochrome c oxidase, a subunit with 2 transmembrane domains (TMS1 and TMS2) residing in the inner mitochondrial membrane with a Nout-Cout topology, is typically encoded in the mitochondrial cox2 gene. In the yeast Saccharomyces cerevisiae, the cox2 gene can be allotopically expressed in the nucleus, yielding a functional protein that restores respiratory growth to a Δcox2 null mutant. In addition to a mitochondrial targeting sequence followed by its natural 15-residue leader peptide, the cytosol synthesized Cox2 precursor must carry one or several amino acid substitutions that decrease the mean hydrophobicity of TMS1 and facilitate its import into the matrix by the TIM23 translocase. Here, using a yeast strain that contains a COX2W56R gene construct inserted in a nuclear chromosome, we searched for genes whose overexpression could facilitate import into mitochondria of the Cox2W56R precursor and increase respiratory growth of the corresponding mutant strain. A COX2W56R expressing strain was transformed with a multicopy plasmid genomic library, and transformants exhibiting enhanced respiratory growth on nonfermentable carbon sources were selected. We identified 3 genes whose overexpression facilitates the internalization of the Cox2W56R subunit into mitochondria, namely: TYE7, RAS2, and COX12. TYE7 encodes a transcriptional factor, RAS2, a GTP-binding protein, and COX12, a non-core subunit of cytochrome c oxidase. We discuss potential mechanisms by which the TYE7, RAS2, and COX12 gene products could facilitate the import and assembly of the Cox2W56R subunit produced allotopically.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David F Barrera-Gómez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Patrice P Hamel
- Department of Molecular Genetics, The Ohio State University, 43210 Columbus, OH, USA
- School of BioScience and Technology, Vellore Institute of Technology, 632014 Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| |
Collapse
|
2
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
3
|
Mirisola MG, Longo VD. Inactivation of Ymr1, Sjl2/3 phosphatases promotes stress resistance and longevity in wild type and Ras2G19V yeast. Biomed J 2024; 47:100694. [PMID: 38154617 PMCID: PMC10950826 DOI: 10.1016/j.bj.2023.100694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
In Saccharomyces cerevisiae, RAt Sarcoma (Ras) activity plays a central role in mediating the effect of glucose in decreasing stress resistance and longevity, with constitutive Ras activation mutations promoting cell growth and oncogenesis. Here, we used transposon mutagenesis in yeast to identify suppressors of the constitutively active Ras2G19V, orthologue of the KRASG12C mammalian oncogene. We identified mutations in Yeast Myotubularin Related (YMR1), SynaptoJanin-Like (SJL2) and SJL3 phosphatases, which target phosphatidylinositol phosphates, as the most potent suppressors of constitutive active Ras, able to reverse its effect on stress sensitization and sufficient to extend longevity. In sjl2 mutants, the staining of Ras-GTP switched from membrane-associated to a diffuse cytoplasmic staining, suggesting that it may block Ras activity by preventing its localization. Whereas expression of the Sjl2 PI 3,4,5 phosphatase mediated stress sensitization in both the Ras2G19V and wild type backgrounds, overexpression of the phosphatidylinositol 3 kinase VPS34 (Vacuolar Protein Sorting), promoted heat shock sensitization only in the Ras2G19V background, suggesting a complex relationship between different phosphatidylinositol and stress resistance. These results provide potential targets to inhibit the growth of cancer cells with constitutive Ras activity and link the glucose-dependent yeast pro-aging Ras signaling pathway to the well-established pro-aging PhosphoInositide 3-Kinase(PI3K) pathway in worms and other species raising the possibility that the conserved longevity effect of mutations in the PI3K-AKT (AK strain Transforming) pathway may involve inhibition of Ras signaling.
Collapse
Affiliation(s)
- M G Mirisola
- SteBiCeF Department, University of Palermo, Palermo, Italy.
| | - V D Longo
- IFOM, AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Bonomelli B, Busti S, Martegani E, Colombo S. Active Ras2 in mitochondria promotes regulated cell death in a cAMP/PKA pathway-dependent manner in budding yeast. FEBS Lett 2023; 597:298-308. [PMID: 36527174 DOI: 10.1002/1873-3468.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Previously, we showed that an aberrant accumulation of activated Ras in mitochondria correlates with an increase in apoptosis. In this article, we show that lack of trehalose-6P-synthase, known to trigger apoptosis in Saccharomyces cerevisiae, induces localization of active Ras proteins in mitochondria, confirming the above-mentioned correlation. Next, by characterizing the ras1Δ and ras2Δ mutants, we show that active Ras2 proteins, which accumulate in the mitochondria following addition of acetic acid (a pro-apoptotic stimulus), are likely the GTPases involved in regulated cell death, while active Ras1 proteins, constitutively localized in mitochondria, might be involved in a pro-survival molecular machinery. Finally, by characterizing the gpa2Δ and cyr1Δ mutants, in which the cAMP/PKA pathway is compromised, we show that active mitochondrial Ras proteins promote apoptosis through the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Barbara Bonomelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
5
|
Yeast Protein Kinase A Isoforms: A Means of Encoding Specificity in the Response to Diverse Stress Conditions? Biomolecules 2022; 12:biom12070958. [PMID: 35883514 PMCID: PMC9313097 DOI: 10.3390/biom12070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells have developed a complex circuitry of signalling molecules which monitor changes in their intra- and extracellular environments. One of the most widely studied signalling pathways is the highly conserved cyclic AMP (cAMP)/protein kinase A (PKA) pathway, which is a major glucose sensing circuit in the yeast Saccharomyces cerevisiae. PKA activity regulates diverse targets in yeast, positively activating the processes that are associated with rapid cell growth (e.g., fermentative metabolism, ribosome biogenesis and cell division) and negatively regulating the processes that are associated with slow growth, such as respiratory growth, carbohydrate storage and entry into stationary phase. As in higher eukaryotes, yeast has evolved complexity at the level of the PKA catalytic subunit, and Saccharomyces cerevisiae expresses three isoforms, denoted Tpk1-3. Despite evidence for isoform differences in multiple biological processes, the molecular basis of PKA signalling specificity remains poorly defined, and many studies continue to assume redundancy with regards to PKA-mediated regulation. PKA has canonically been shown to play a key role in fine-tuning the cellular response to diverse stressors; however, recent studies have now begun to interrogate the requirement for individual PKA catalytic isoforms in coordinating distinct steps in stress response pathways. In this review, we discuss the known non-redundant functions of the Tpk catalytic subunits and the evolving picture of how these isoforms establish specificity in the response to different stress conditions.
Collapse
|
6
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
7
|
Colombo S, Longoni E, Gnugnoli M, Busti S, Martegani E. Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 2022; 92:110262. [DOI: 10.1016/j.cellsig.2022.110262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
|
8
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
9
|
Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol 2021; 9:642375. [PMID: 34249904 PMCID: PMC8264433 DOI: 10.3389/fcell.2021.642375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
Acetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry. Due to its obvious interest to industrial processes, research on the mechanisms underlying the impact of acetic acid in yeast cells has been increasing. In the past twenty years, a plethora of studies have addressed the intricate cascade of molecular events involved in cell death induced by acetic acid, which is now considered a model in the yeast regulated cell death field. As such, understanding how acetic acid modulates cellular functions brought about important knowledge on modulable targets not only in biotechnology but also in biomedicine. Here, we performed a comprehensive literature review to compile information from published studies performed with lethal concentrations of acetic acid, which shed light on regulated cell death mechanisms. We present an historical retrospective of research on this topic, first providing an overview of the cell death process induced by acetic acid, including functional and structural alterations, followed by an in-depth description of its pharmacological and genetic regulation. As the mechanistic understanding of regulated cell death is crucial both to design improved biomedical strategies and to develop more robust and resilient yeast strains for industrial applications, acetic acid-induced cell death remains a fruitful and open field of study.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - António Rego
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Vítor M Martins
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Quadri R, Galli M, Galati E, Rotondo G, Gallo GR, Panigada D, Plevani P, Muzi-Falconi M. Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization. Cell Discov 2020; 6:42. [PMID: 32595981 PMCID: PMC7308332 DOI: 10.1038/s41421-020-0170-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/08/2022] Open
Abstract
Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis.
Collapse
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Present Address: IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Rotondo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Guido Roberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
11
|
Bonomelli B, Martegani E, Colombo S. Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2019; 523:130-134. [PMID: 31837801 DOI: 10.1016/j.bbrc.2019.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022]
Abstract
In previous papers we showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type yeast cells growing exponentially on glucose, while an aberrant accumulation of activated Ras in mitochondria correlated to mitochondrial dysfunction, accumulation of ROS and regulated cell death. Here we show that also in a strain lacking Snf1, the homolog of the AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae, activated Ras proteins accumulate mainly in these organelles, suggesting an antiapoptotic role for this protein, beside its well-known function in glucose repression. Indeed, in this paper we show that Snf1 protects against apoptosis in Saccharomyces cerevisiae. In particular, following treatment with acetic acid, a well-known inducer of apoptosis in this microorganism, snf1Δ cells show a significant reduction in cell survival and a higher level of ROS when compared with wild-type cells. More importantly, untreated snf1Δ cells show a higher percentage of apoptotic cells compared with wild-type cells, which further increases upon treatment with acetic acid. In order to determine whether the role of Snf1 in regulated cell death is dependent on its catalytic activity, we characterized the Snf1-S214E strain, expressing a catalytically inactive form of Snf1. Data on active Ras proteins localization, cell survival, level of ROS and percentage of apoptotic cells are congruent and suggest that the antiapoptotic role of Snf1 is independent on its kinase activity.
Collapse
Affiliation(s)
- Barbara Bonomelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy; SysBio Centre of Systems Biology, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy; SysBio Centre of Systems Biology, Piazza Della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
12
|
Konarzewska P, Sherr GL, Ahmed S, Ursomanno B, Shen CH. Vma3p protects cells from programmed cell death through the regulation of Hxk2p expression. Biochem Biophys Res Commun 2017; 493:233-239. [PMID: 28899778 DOI: 10.1016/j.bbrc.2017.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
In yeast, the vacuolar proton-pumping ATPase (V-ATPase) acidifies vacuoles to maintain pH of cytoplasm. Yeast cells lacking V-ATPase activity, due to a disruption of any VMA (vacuolar membrane ATPase) gene, remain viable but demonstrate growth defects. Although it has been suggested that VMA genes are critical for phospholipid biosynthesis, the link between VMA genes and phospholipid biosynthesis is still uncertain. Here, we found that cells lacking Vma3p, one of the major V-ATPase assembly genes, had a growth defect in the absence of inositol, suggesting that Vma3p is important in phospholipid biosynthesis. Through real-time PCR, we found that cells lacking Vma3p down-regulated HXK2 expression. Furthermore, acetic acid sensitivity assay showed that cells lacking Vma3p were more sensitive to acetic acid than WT cells. HXK2 encodes hexokinase 2 which can phosphorylate glucose during phospholipid biosynthesis. Since cells lacking HXK2 are sensitive to acetic acid and this is an indicator of programmed cell death, our observations suggest that Vma3p plays an important role in programmed cell death. Taken together, we have proposed a working model to describe how Vma3p protects cells against apoptosis through the regulation of HXK2 expression.
Collapse
Affiliation(s)
- Paulina Konarzewska
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, USA
| | - Goldie Libby Sherr
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, USA
| | - Suzanne Ahmed
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Brendon Ursomanno
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Chang-Hui Shen
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, USA; Institute for Macromolecular Assemblies, City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| |
Collapse
|
13
|
Colombo S, Broggi S, Collini M, D'Alfonso L, Chirico G, Martegani E. Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes. Biochem Biophys Res Commun 2017; 487:594-599. [PMID: 28433631 DOI: 10.1016/j.bbrc.2017.04.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022]
Abstract
In Saccharomyces cerevisiae the second messenger cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) play a central role in metabolism regulation, stress resistance and cell cycle progression. To monitor cAMP levels and PKA activity in vivo in single S. cerevisiae cells, we expressed an Epac-based FRET probe and a FRET-based A-kinase activity reporter, which were proven to be useful live-cell biosensors for cAMP levels and PKA activity in mammalian cells. Regarding detection of cAMP in single yeast cells, we show that in wild type strains the CFP/YFP fluorescence ratio increased immediately after glucose addition to derepressed cells, while no changes were observed when glucose was added to a strain that is not able to produce cAMP. In addition, we had evidence for damped oscillations in cAMP levels at least in SP1 strain. Regarding detection of PKA activity, we show that in wild type strains the FRET increased after glucose addition to derepressed cells, while no changes were observed when glucose was added to either a strain that is not able to produce cAMP or to a strain with absent PKA activity. Taken together these probes are useful to follow activation of the cAMP/PKA pathway in single yeast cells and for long times (up to one hour).
Collapse
Affiliation(s)
- Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SysBio Centre of Systems Biology, Piazza della Scienza 2, I-20126 Milan, Italy
| | - Serena Broggi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; S.C. di Ematologia e Trapianto di Midollo Osseo, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte Perugia, Italy
| | | | - Laura D'Alfonso
- Department of Physics, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Chirico
- Department of Physics, University of Milano-Bicocca, Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; SysBio Centre of Systems Biology, Piazza della Scienza 2, I-20126 Milan, Italy.
| |
Collapse
|
14
|
Amigoni L, Frigerio G, Martegani E, Colombo S. Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow016. [DOI: 10.1093/femsyr/fow016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2016] [Indexed: 12/26/2022] Open
|
15
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare. PLoS One 2014; 9:e109045. [PMID: 25275394 PMCID: PMC4183519 DOI: 10.1371/journal.pone.0109045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Colletotrichum orbiculare is the causative agent of anthracnose disease on cucurbitaceous plants. Several signaling pathways, including cAMP–PKA and mitogen-activating protein kinase (MAPK) pathways are involved in the infection-related morphogenesis and pathogenicity of C. orbiculare. However, upstream regulators of these pathways for this species remain unidentified. In this study, CoIRA1, encoding RAS GTPase activating protein, was identified by screening the Agrobacterium tumefaciens-mediated transformation (AtMT) mutant, which was defective in the pathogenesis of C. orbiculare. The coira1 disrupted mutant showed an abnormal infection-related morphogenesis and attenuated pathogenesis. In Saccharomyces cerevisiae, Ira1/2 inactivates Ras1/2, which activates adenylate cyclase, leading to the synthesis of cAMP. Increase in the intracellular cAMP levels in coira1 mutants and dominant active forms of CoRAS2 introduced transformants indicated that CoIra1 regulates intracellular cAMP levels through CoRas2. Moreover, the phenotypic analysis of transformants that express dominant active form CoRAS2 in the comekk1 mutant or a dominant active form CoMEKK1 in the coras2 mutant indicated that CoRas2 regulates the MAPK CoMekk1–Cmk1 signaling pathway. The CoRas2 localization pattern in vegetative hyphae of the coira1 mutant was similar to that of the wild-type, expressing a dominant active form of RFP–CoRAS2. Moreover, we demonstrated that bimolecular fluorescence complementation (BiFC) signals between CoIra1 and CoRas2 were detected in the plasma membrane of vegetative hyphae. Therefore, it is likely that CoIra1 negatively regulates CoRas2 in vegetative hyphae. Furthermore, cytological analysis of the localization of CoIraI and CoRas2 revealed the dynamic cellular localization of the proteins that leads to proper assembly of F-actin at appressorial pore required for successful penetration peg formation through the pore. Thus, our results indicated that CoIra1 is involved in infection-related morphogenesis and pathogenicity by proper regulation of cAMP and MAPK signaling pathways through CoRas2.
Collapse
|
17
|
Methods to study the Ras2 protein activation state and the subcellular localization of Ras-GTP in Saccharomyces cerevisiae. Methods Mol Biol 2014; 1120:391-405. [PMID: 24470038 DOI: 10.1007/978-1-62703-791-4_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ras proteins were highly conserved during evolution. They function as a point of convergence for different signalling pathways in eukaryotes and are involved in a wide range of cellular responses (shift from gluconeogenic to fermentative growth, breakdown of storage carbohydrates, stress resistance, growth control and determination of life span, morphogenesis and development, and others). These proteins are members of the small GTPase superfamily, which are active in the GTP-bound form and inactive in the GDP-bound form. Given the importance of studies on the Ras protein activation state to understand the detailed mechanism of Ras-mediated signal transduction, we provide here a simple, sensitive, and reliable method, based on the high affinity interaction of Ras-GTP with the Ras binding domain (RBD) of Raf1, to measure the level of Ras2-GTP on total Ras2 in Saccharomyces cerevisiae. Moreover, to study the localization of Ras-GTP in vivo in single S. cerevisiae cells, we expressed a probe consisting of a GFP fusion with a trimeric Ras Binding Domain of Raf1 (eGFP-RBD3), which was proven to be a useful live-cell biosensor for Ras-GTP in mammalian cells.
Collapse
|
18
|
Real-time visualization and quantification of native Ras activation in single living cells. Methods Mol Biol 2014; 1120:285-305. [PMID: 24470033 DOI: 10.1007/978-1-62703-791-4_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Members of the Ras family of small guanosine triphosphate phosphohydrolases are GDP/GTP-binding proteins that function as pivotal molecular switches in multiple cell biological processes. The prototypical Ras family members K-Ras, N-Ras, and H-Ras, in particular, have been the focus of intense research for the last 30 years owing to their critical function as signalling nodes in the control of cell growth and proliferation and as drivers of oncogenic transformation. One aspect that has attracted much attention in recent times is the spatial control of Ras activity, which is dictated largely by a series of posttranslational modifications that do effectively govern the subcellular distribution and trafficking of Ras. Accordingly, strong emphasis has been placed on developing methodological microscopy-based approaches for the visualization of active Ras-GTP complexes at subcellular resolution. Here we describe the use of a collection of fluorescent affinity probes for the real-time visualization of Ras-GTP in live cells. These probes are multivalent and thus feature high avidity/affinity to Ras-GTP, which obviates the over-expression of Ras and enables one to image endogenous Ras-GTP formation. In addition, this chapter details the use of automated segmentation strategies for the unbiased quantification of probe-derived fluorescence at individual subcellular sites like the plasma membrane and endomembranes.
Collapse
|
19
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
20
|
Augsten M, Böttcher A, Spanbroek R, Rubio I, Friedrich K. Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains. Cell Commun Signal 2014; 12:1. [PMID: 24383791 PMCID: PMC3898410 DOI: 10.1186/1478-811x-12-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/26/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ras is a membrane-associated small G-protein that funnels growth and differentiation signals into downstream signal transduction pathways by cycling between an inactive, GDP-bound and an active, GTP-bound state. Aberrant Ras activity as a result of oncogenic mutations causes de novo cell transformation and promotes tumor growth and progression. RESULTS Here, we describe a novel strategy to block deregulated Ras activity by means of oligomerized cognate protein modules derived from the Ras-binding domain of c-Raf (RBD), which we named MSOR for multivalent scavengers of oncogenic Ras. The introduction of well-characterized mutations into RBD was used to adjust the affinity and hence the blocking potency of MSOR towards activated Ras. MSOR inhibited several oncogenic Ras-stimulated processes including downstream activation of Erk1/2, induction of matrix-degrading enzymes, cell motility and invasiveness in a graded fashion depending on the oligomerization grade and the nature of the individual RBD-modules. The amenability to accurate experimental regulation was further improved by engineering an inducible MSOR-expression system to render the reversal of oncogenic Ras effects controllable. CONCLUSION MSOR represent a new tool for the experimental and possibly therapeutic selective blockade of oncogenic Ras signals.
Collapse
Affiliation(s)
- Martin Augsten
- Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
22
|
Nuclear Ras2-GTP controls invasive growth in Saccharomyces cerevisiae. PLoS One 2013; 8:e79274. [PMID: 24244466 PMCID: PMC3828362 DOI: 10.1371/journal.pone.0079274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Using an eGFP-RBD3 probe, which specifically binds Ras-GTP, we recently showed that the fluorescent probe was localized to the plasma membrane and to the nucleus in wild type cells growing exponentially on glucose medium, indicating the presence of active Ras in these cellular compartments. To investigate the nuclear function of Ras-GTP, we generated a strain where Ras2 is fused to the nuclear export signal (NES) from the HIV virus, in order to exclude this protein from the nucleus. Our results show that nuclear active Ras2 is required for invasive growth development in haploid yeast, while the expression of the NES-Ras2 protein does not cause growth defects either on fermentable or non-fermentable carbon sources and does not influence protein kinase A (PKA) activity related phenotypes analysed. Moreover, we show that the cAMP/PKA pathway controls invasive growth influencing the localization of active Ras. In particular, we show that PKA activity plays a role in the localization of active Ras and influences the ability of the cells to invade the agar: high PKA activity leads to a predominant nuclear accumulation of active Ras and induces invasive growth, while low PKA activity leads to plasma membrane localization of active Ras and to a defective invasive growth phenotype.
Collapse
|
23
|
Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:678473. [PMID: 24089630 PMCID: PMC3780702 DOI: 10.1155/2013/678473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 01/24/2023]
Abstract
We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.
Collapse
|