1
|
Vecchie’ D, Wolter JM, Perry J, Jumbo-Lucioni P, De Luca M. The Impact of the Angiotensin-Converting Enzyme Inhibitor Lisinopril on Metabolic Rate in Drosophila melanogaster. Int J Mol Sci 2024; 25:10103. [PMID: 39337588 PMCID: PMC11432024 DOI: 10.3390/ijms251810103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Evidence suggests that angiotensin-converting enzyme inhibitors (ACEIs) may increase metabolic rate by promoting thermogenesis, potentially through enhanced fat oxidation and improved insulin. More research is, however, needed to understand this intricate process. In this study, we used 22 lines from the Drosophila Genetic Reference Panel to assess the metabolic rate of virgin female and male flies that were either fed a standard medium or received lisinopril for one week or five weeks. We demonstrated that lisinopril affects the whole-body metabolic rate in Drosophila melanogaster in a genotype-dependent manner. However, the effects of genotypes are highly context-dependent, being influenced by sex and age. Our findings also suggest that lisinopril may increase the Drosophila metabolic rate via the accumulation of a bradykinin-like peptide, which, in turn, enhances cold tolerance by upregulating Ucp4b and Ucp4c genes. Finally, we showed that knocking down Ance, the ortholog of mammalian ACE in Malpighian/renal tubules and the nervous system, leads to opposite changes in metabolic rate, and that the effect of lisinopril depends on Ance in these systems, but in a sex- and age-specific manner. In conclusion, our results regarding D. melanogaster support existing evidence of a connection between ACEI drugs and metabolic rate while offering new insights into this relationship.
Collapse
Affiliation(s)
- Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Julia M. Wolter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Jesse Perry
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Patricia Jumbo-Lucioni
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL 35229, USA;
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| |
Collapse
|
2
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
3
|
Irene Díez García-Prieto I, Lopez-Martín S, Albert J, Jiménez de la Peña M, Fernández-Mayoralas DM, Calleja-Pérez B, Gómez Fernández MT, Álvarez S, Pihlajaniemi T, Izzi V, Fernández-Jaén A. Mutations in the COL18A1 gen associated with knobloch syndrome and structural brain anomalies: a novel case report and literature review of neuroimaging findings. Neurocase 2022; 28:11-18. [PMID: 35253627 DOI: 10.1080/13554794.2021.1928228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
. COL18A1 gene mutations have been associated with Knobloch syndrome, which is characterized by ocular and brain abnormalities. Here we report a 4.5 years-old male child with autism and two novel COL18A1 mutations (NM_030582.4: c.1883_1891dup and c.1787C>T). Hypermetropic astigmatism, but not brain migration disorders, was observed. However, an asymmetric pattern of cerebellar perfusion and a smaller arcuate fascicle were found. Low levels of collagen XVIII were also observed in the patient´s serum. Thus, biallelic loss-of-function mutations in COL18A1 may be a new cause of autism without the brain malformations typically reported in patients with Knobloch syndrome.
Collapse
Affiliation(s)
| | - Sara Lopez-Martín
- Faculty of Psychology, Universidad Autónoma De Madrid, Madrid, Spain.,Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma De Madrid, Madrid, Spain
| | - Mar Jiménez de la Peña
- Department of Radiology, Neuroimaging. Hospital Universitario Quirónsalud, Madrid, Spain
| | | | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research and Biocenter, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research and Biocenter, University of Oulu, Oulu, Finland
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea De Madrid, Madrid, Spain
| |
Collapse
|
4
|
Bonche R, Chessel A, Boisivon S, Smolen P, Thérond P, Pizette S. Two different sources of Perlecan cooperate for its function in the basement membrane of the Drosophila wing imaginal disc. Dev Dyn 2020; 250:542-561. [PMID: 33269518 DOI: 10.1002/dvdy.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The basement membrane (BM) provides mechanical shaping of tissues during morphogenesis. The Drosophila BM proteoglycan Perlecan is vital for this process in the wing imaginal disc. This function is thought to be fostered by the heparan sulfate chains attached to the domain I of vertebrate Perlecan. However, this domain is not present in Drosophila, and the source of Perlecan for the wing imaginal disc BM remains unclear. Here, we tackle these two issues. RESULTS In silico analysis shows that Drosophila Perlecan holds a domain I. Moreover, by combining in situ hybridization of Perlecan mRNA and protein staining, together with tissue-specific Perlecan depletion, we find that there is an autonomous and a non-autonomous source for Perlecan deposition in the wing imaginal disc BM. We further show that both sources cooperate for correct distribution of Perlecan in the wing imaginal disc and morphogenesis of this tissue. CONCLUSIONS These results show that Perlecan is fully conserved in Drosophila, providing a valuable in vivo model system to study its role in BM function. The existence of two different sources for Perlecan incorporation in the wing imaginal disc BM raises the possibility that inter-organ communication mediated at the level of the BM is involved in organogenesis.
Collapse
Affiliation(s)
- Raphaël Bonche
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Séverine Boisivon
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Prune Smolen
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Pascal Thérond
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Sandrine Pizette
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
5
|
Huang A, Guo G, Yu Y, Yao L. The roles of collagen in chronic kidney disease and vascular calcification. J Mol Med (Berl) 2020; 99:75-92. [PMID: 33236192 DOI: 10.1007/s00109-020-02014-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
The extracellular matrix component collagen is widely expressed in human tissues and participates in various cellular biological processes. The collagen amount generally remains stable due to intricate regulatory networks, but abnormalities can lead to several diseases. During the development of renal fibrosis and vascular calcification, the expression of collagen is significantly increased, which promotes phenotypic changes in intrinsic renal cells and vascular smooth muscle cells, thereby exacerbating disease progression. Reversing the overexpression of collagen substantially prevents or slows renal fibrosis and vascular calcification in a wide range of animal models, suggesting a novel target for treating patients with these diseases. Stem cell therapy seems to be an effective strategy to alleviate these two conditions. However, recent findings indicate that the natural pore structure of collagen fibers is sufficient to induce the inappropriate differentiation of stem cells and thereby exacerbate renal fibrosis and vascular calcification. A comprehensive understanding of the role of collagen in these diseases and its effect on stem cell biology will assist in improving the unmet requirements for treating patients with kidney disease.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110013, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang, 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
6
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
7
|
Bretaud S, Guillon E, Karppinen SM, Pihlajaniemi T, Ruggiero F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biol Plus 2020; 6-7:100023. [PMID: 33543021 PMCID: PMC7852327 DOI: 10.1016/j.mbplus.2020.100023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule. Despite the cumulative evidence of its functional pleiotropy and its evolutionary conserved function, no review compiling the current state of the art about collagen XV is currently available. Here, we thus provide the first comprehensive view of the knowledge gathered so far on the molecular structure, tissue distribution and functions of collagen XV in development, tissue homeostasis and disease with an evolutionary perspective. We hope that our review will open new roads for promising research on collagen XV in the coming years. Type XV collagen belongs to the multiplexin subset of the collagen superfamily. It is evolutionarily conserved collagen and associated with basement membranes. This collagen/proteoglycan hybrid molecule contains an anti-angiogenic restin domain. It has important functions in the cardiovascular and the neuromuscular systems. Its expression is dysregulated in various diseases including cancers.
Collapse
Key Words
- Animal models
- BM, basement membrane
- BMZ, basement membrane zone
- COL, collagenous domain
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycan
- Collagen-related disease
- Collagens
- Development
- ECM, extracellular matrix
- Evolution
- Extracellular matrix
- GAG, glycosaminoglycan
- HFD, High fat diet
- HS, heparan sulfate
- HSPG, heparan sulfate proteoglycan
- Multiplexin
- NC, non-collagenous domain
- TD, trimerization domain
- TSPN, Thrombospondin-1 N-terminal like domain
- dpf, day post-fertilization
Collapse
Affiliation(s)
- Sandrine Bretaud
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Emilie Guillon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Sanna-Maria Karppinen
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Taina Pihlajaniemi
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| |
Collapse
|
8
|
Yonezawa T, Momota R, Iwano H, Zhao S, Hakozaki T, Soh C, Sawaki S, Toyama K, Oohashi T. Unripe peach (Prunus persica) extract ameliorates damage from UV irradiation and improved collagen XVIII expression in 3D skin model. J Cosmet Dermatol 2019; 18:1507-1515. [PMID: 30548159 DOI: 10.1111/jocd.12841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/28/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Collagen type XVIII regulates cellular activities of adjacent cells at the dermal-epidermal junction (DEJ). To investigate its possible changes during aging, we compared its mRNA levels and protein localization in skin samples from female participants aged 20-70 years old. In addition, we evaluated the beneficial effects of unripe peach extracts in a 3D skin model. METHODS Sun-exposed or sun-protected female skin samples were compared by DNA array or by immunohistochemistry for basement membrane components. To evaluate protective effects of fresh unripe peach extract, UV-B irradiated human 3D skin models were incubated in the presence or absence of the extract, followed by measurements of mRNA levels by real-time PCR, or by immunohistochemistry. RESULTS In aged skin samples, COL18A1 mRNA levels were lower and the protein localization exhibited less intensive signal by anti-collagen type XVIII immunostaining. As observed in the skin tissues, collagen type XVIII exists at the DEJ in the 3D skin model. Fresh unripe peach extract significantly improved mRNA levels and partially localizations of collagen type XVIII, suggesting that fresh unripe peach extract ameliorates DEJ damages caused by UV-B irradiation. CONCLUSION Collagen type XVIII and fresh unripe peach extract can be promising protective cosmetic strategies against skin aging.
Collapse
Affiliation(s)
- Tomoko Yonezawa
- Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryusuke Momota
- Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Steven Zhao
- The Procter & Gamble Company, Cincinnati, Ohio
| | | | | | | | | | - Toshitaka Oohashi
- Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
10
|
Age- and Genotype-Specific Effects of the Angiotensin-Converting Enzyme Inhibitor Lisinopril on Mitochondrial and Metabolic Parameters in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19113351. [PMID: 30373167 PMCID: PMC6274988 DOI: 10.3390/ijms19113351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme (ACE) is a peptidase that is involved in the synthesis of Angiotensin II, the bioactive component of the renin-angiotensin system. A growing body of literature argues for a beneficial impact of ACE inhibitors (ACEi) on age-associated metabolic disorders, mediated by cellular changes in reactive oxygen species (ROS) that improve mitochondrial function. Yet, our understanding of the relationship between ACEi therapy and metabolic parameters is limited. Here, we used three genetically diverse strains of Drosophila melanogaster to show that Lisinopril treatment reduces thoracic ROS levels and mitochondrial respiration in young flies, and increases mitochondrial content in middle-aged flies. Using untargeted metabolomics analysis, we also showed that Lisinopril perturbs the thoracic metabolic network structure by affecting metabolic pathways involved in glycogen degradation, glycolysis, and mevalonate metabolism. The Lisinopril-induced effects on mitochondrial and metabolic parameters, however, are genotype-specific and likely reflect the drug's impact on nutrient-dependent fitness traits. Accordingly, we found that Lisinopril negatively affects survival under nutrient starvation, an effect that can be blunted by genotype and age in a manner that partially mirrors the drug-induced changes in mitochondrial respiration. In conclusion, our results provide novel and important insights into the role of ACEi in cellular metabolism.
Collapse
|
11
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
12
|
Parker SJ, Stotland A, MacFarlane E, Wilson N, Orosco A, Venkatraman V, Madrid K, Gottlieb R, Dietz HC, Van Eyk JE. Proteomics reveals Rictor as a noncanonical TGF-β signaling target during aneurysm progression in Marfan mice. Am J Physiol Heart Circ Physiol 2018; 315:H1112-H1126. [PMID: 30004239 DOI: 10.1152/ajpheart.00089.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to 1) analyze the ascending aortic proteome within a mouse model of Marfan syndrome (MFS; Fbn1C1041G/+) at early and late stages of aneurysm and 2) subsequently test a novel hypothesis formulated on the basis of this unbiased proteomic screen that links changes in integrin composition to transforming growth factor (TGF)-β-dependent activation of the rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling pathway. Ingenuity Pathway Analysis of over 1,000 proteins quantified from the in vivo MFS mouse aorta by data-independent acquisition mass spectrometry revealed a predicted upstream regulator, Rictor, that was selectively activated in aged MFS mice. We validated this pattern of Rictor activation in vivo by Western blot analysis for phosphorylation on Thr1135 in a separate cohort of mice and showed in vitro that TGF-β activates Rictor in an integrin-linked kinase-dependent manner in cultured aortic vascular smooth muscle cells. Expression of β3-integrin was upregulated in the aged MFS aorta relative to young MFS mice and wild-type mice. We showed that β3-integrin expression and activation modulated TGF-β-induced Rictor phosphorylation in vitro, and this signaling effect was associated with an altered vascular smooth muscle cell proliferative-migratory and metabolic in vitro phenotype that parallels the in vivo aneurysm phenotype in MFS. These results reveal that Rictor is a novel, context-dependent, noncanonical TGF-β signaling effector with potential pathogenic implications in aortic aneurysm. NEW & NOTEWORTHY We present the most comprehensive quantitative analysis of the ascending aortic aneurysm proteome in Marfan syndrome to date resulting in novel and potentially wide-reaching findings that expression and signaling by β3-integrin constitute a modulator of transforming growth factor-β-induced rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling and physiology in aortic vascular smooth muscle cells.
Collapse
Affiliation(s)
- Sarah J Parker
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California.,Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Aleksandr Stotland
- Molecular Cardiobiology, The Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California
| | - Elena MacFarlane
- Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Nicole Wilson
- Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Amanda Orosco
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California.,Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Kyle Madrid
- Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, California
| | - Roberta Gottlieb
- Molecular Cardiobiology, The Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California
| | - Harry C Dietz
- Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland.,Howard Hughes Medical Institute , Chevy Chase, Maryland
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California.,Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
13
|
White RJ, Wang Y, Tang P, Montezuma SR. Knobloch syndrome associated with Polymicrogyria and early onset of retinal detachment: two case reports. BMC Ophthalmol 2017; 17:214. [PMID: 29178892 PMCID: PMC5702215 DOI: 10.1186/s12886-017-0615-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
Background Knobloch Syndrome (KS) is a rare congenital syndrome characterized by occipital skull defects and vitreoretinal degeneration. Retinal detachment (RD) often occurs at the end of the first decade of life or later. Aside from occipital skull defects, central nervous system abnormalities are uncommon. Case presentations We report on two siblings with KS. The first, a seven month old male, presented with nystagmus and was found to have a serous RD and a tessellated retinal appearance. His sister had a history of multiple visual abnormalities and had a similar retinal appearance although no signs of RD, but retina staphylomas. Genetic testing performed on both siblings showed a mutation in COL18A1, diagnostic of KS. MRI of both siblings demonstrated polymicrogyria but did not show occipital defects. Conclusions Although several families with KS have been described previously, our case is noteworthy for several reasons. The RD observed in our first patient occurred at an early age, and we find evidence of only one patient with KS who had an RD identified at an earlier age. The findings of polymicrogyria are not characteristic of KS, and we found only a few previous reports of this association. Additionally, we review potential treatment options for this condition.
Collapse
Affiliation(s)
- Robert J White
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St. SE, MMC 493, Minneapolis, MN, 55455-0501, USA
| | - Yao Wang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St. SE, MMC 493, Minneapolis, MN, 55455-0501, USA
| | - Peter Tang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St. SE, MMC 493, Minneapolis, MN, 55455-0501, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St. SE, MMC 493, Minneapolis, MN, 55455-0501, USA.
| |
Collapse
|
14
|
Silva-Oliveira RG, Orsolin PC, Nepomuceno JC. Modulating effect of losartan potassium on the mutagenicity and recombinogenicity of doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2016; 95:211-8. [PMID: 27394655 DOI: 10.1016/j.fct.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Losartan potassium is an antihypertensive drug in the angiotensin II receptor antagonist (ARA) class. Some studies claim that, in addition to regulating blood pressure, this class of drug has anticancer properties. The objective of this study was to evaluate the genotoxic and antigenotoxic potential of losartan potassium using the SMART (Somatic Mutation and Recombination Test) assay on the somatic cells of Drosophila melanogaster, as well as the possible modulating effects of this drug, when associated with doxorubicin (DXR). Third instar larvae, descendents of standard and high bioactivation (ST and HB) crosses, were chronically treated with different concentrations of losartan potassium (0.25; 0.5; 1; 2; and 4 mM) alone or in association (co-treatment) with doxorubicin (DXR 0.125 mg/mL). The results showed an absence of a mutagenic effect of losartan potassium. In the co-treatment of losartan with DXR, the results showed that losartan is capable of reducing the number of mutant spots induced by DXR without altering the recombinogenic effect of the chemotherapeutic agent. Antiproliferative action appears to be the main mechanism involved in reducing the frequency of mutant spots and consequent modulation of alterations induced by DXR, although this parameter has not been directly assessed in this study.
Collapse
Affiliation(s)
- R G Silva-Oliveira
- Universidade Federal de Uberlândia, Institute of Genetics and Biochemistry, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratory for Cytogenetics and Mutagenesis, Patos de Minas, Minas Gerais, Brazil.
| | - P C Orsolin
- Universidade Federal de Uberlândia, Institute of Genetics and Biochemistry, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratory for Cytogenetics and Mutagenesis, Patos de Minas, Minas Gerais, Brazil
| | - J C Nepomuceno
- Universidade Federal de Uberlândia, Institute of Genetics and Biochemistry, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratory for Cytogenetics and Mutagenesis, Patos de Minas, Minas Gerais, Brazil
| |
Collapse
|
15
|
Ordan E, Brankatschk M, Dickson B, Schnorrer F, Volk T. Slit cleavage is essential for producing an active, stable, non-diffusible short-range signal that guides muscle migration. Development 2015; 142:1431-6. [PMID: 25813540 DOI: 10.1242/dev.119131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
During organogenesis, secreted signaling proteins direct cell migration towards their target tissue. In Drosophila embryos, developing muscles are guided by signals produced by tendons to promote the proper attachment of muscles to tendons, essential for proper locomotion. Previously, the repulsive protein Slit, secreted by tendon cells, has been proposed to be an attractant for muscle migration. However, our findings demonstrate that through tight control of its distribution, Slit repulsion is used for both directing and arresting muscle migration. We show that Slit cleavage restricts its distribution to tendon cells, allowing it to function as a short-range repellent that directs muscle migration and patterning, and promotes their halt upon reaching the target site. Mechanistically, we show that Slit processing produces a rapidly degraded C-terminal fragment and an active, stable N-terminal polypeptide that is tethered to the tendon cell membrane, which further protects it from degradation. Consistently, the requirement for Slit processing can be bypassed by providing an uncleavable, membrane-bound form of Slit that is stable and is retained on expressing tendon cells. Moreover, muscle elongation appears to be extremely sensitive to Slit levels, as replacing the entire full-length Slit with the stable Slit-N-polypeptide results in excessive repulsion, which leads to a defective muscle pattern. These findings reveal a novel cleavage-dependent regulatory mechanism controlling Slit spatial distribution, which may operate in other Slit-dependent processes.
Collapse
Affiliation(s)
- Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Barry Dickson
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Frank Schnorrer
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Martínez-Morentin L, Martínez L, Piloto S, Yang H, Schon EA, Garesse R, Bodmer R, Ocorr K, Cervera M, Arredondo JJ. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model. Hum Mol Genet 2015; 24:3608-22. [PMID: 25792727 DOI: 10.1093/hmg/ddv106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/17/2015] [Indexed: 12/18/2022] Open
Abstract
The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.
Collapse
Affiliation(s)
- Leticia Martínez-Morentin
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Lidia Martínez
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Sarah Piloto
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pine Rd, San Diego, CA 92037, USA
| | - Hua Yang
- Department of Neurology and Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 630 West 168th Street P&S 4-449, New York, NY, USA and
| | - Eric A Schon
- Department of Neurology and Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 630 West 168th Street P&S 4-449, New York, NY, USA and
| | - Rafael Garesse
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pine Rd, San Diego, CA 92037, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pine Rd, San Diego, CA 92037, USA,
| | - Margarita Cervera
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| | - Juan J Arredondo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| |
Collapse
|
17
|
Spincemaille P, Chandhok G, Zibert A, Schmidt H, Verbeek J, Chaltin P, Cammue BP, Cassiman D, Thevissen K. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin. MICROBIAL CELL 2014; 1:352-364. [PMID: 28357214 PMCID: PMC5349125 DOI: 10.15698/mic2014.11.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human pathology Wilson disease (WD) is characterized by toxic copper (Cu)
accumulation in brain and liver, resulting in, among other indications,
mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify
novel compounds that can alleviate Cu-induced toxicity, we screened the
Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We
identified 2 members of the drug class of Angiotensin II Type 1 receptor
blockers (ARBs) that could increase yeast tolerance to Cu, namely Candesartan
and Losartan. Subsequently, we show that specific ARBs can increase yeast
tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp). The latter
also induces mitochondrial dysfunction and apoptosis in mammalian cells. We
further demonstrate that specific ARBs can prevent the prevalence of Cu-induced
apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which
demonstrated most pronounced reduction of apoptosis-related markers. Next, we
tested the sensitivity of a selection of yeast knockout mutants affected in
detoxification of reactive oxygen species (ROS) and Cu for Candesartan Cilexetil
rescue in presence of Cu. These data indicate that Candesartan Cilexetil
increases yeast tolerance to Cu irrespectively of major ROS-detoxifying
proteins. Finally, we show that specific ARBs can increase mammalian cell
tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic
markers. All the above point to the potential of ARBs in preventing Cu-induced
toxicity in yeast and mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Andree Zibert
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Hartmut Schmidt
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Jef Verbeek
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Bio-Incubator 2, Wetenschapspark Arenberg, Gaston Geenslaan 2, 3001 Heverlee, Belgium. ; Centre for Drug Design and Discovery (CD3), KU Leuven R&D, Waaistraat 6, Box 5105, 3000 Leuven
| | - Bruno P Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium. ; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|