1
|
Li H, Li R, Yu H, Zhang Y, Feng H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: Sequence conservation, structures, domain distribution. PLoS One 2025; 20:e0322880. [PMID: 40388423 PMCID: PMC12088040 DOI: 10.1371/journal.pone.0322880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/28/2025] [Indexed: 05/21/2025] Open
Abstract
Serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) are widely present across various organisms and play crucial roles in regulating cellular processes such as growth, proliferation, signal transduction, and other physiological functions. Recent research has increasingly focused on the regulation of STKs and STPs in bacteria. STKs have been well studied, identified and characterized in a variety of bacterial species. However, the role of STPs in bacteria remains less understood, and the number of proteins characterized is limited. It has been found that most of the STPs characterized in bacteria were Mg2+/Mn2+ dependent 2C protein phosphatases (PP2Cs), but the evolutionary relationship and taxonomic distribution of bacterial PP2C phosphatases were still not fully elucidated. In this study, we utilized bacterial PP2C phosphatase sequences from the InterPro database to perform a phylogenetic analysis, categorizing the family into five groups. Based on this classification, we examined the evolutionary relationships, species distribution, sequence and structural variations, and domain distribution characteristics of bacterial PP2C phosphatases. Our analysis uncovered evidence of a common evolutionary origin for bacterial PP2C phosphatases. These findings advance the understanding of PP2C phosphatases, offering valuable insights for future functional studies of bacterial serine/threonine phosphatases and aiding in the design of targeted therapeutics for pathogenic bacteria.
Collapse
Affiliation(s)
- Hang Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyue Yu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Youhuan Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Feng
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sharma DK, Soni I, Rajpurohit YS. Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed Deinococcus radiodurans. Appl Environ Microbiol 2025; 91:e0137124. [PMID: 39651863 PMCID: PMC11784314 DOI: 10.1128/aem.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Deinococcus radiodurans, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed D. radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of D. radiodurans under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of D. radiodurans to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCEDeinococcus radiodurans is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium Deinococcus radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance D. radiodurans survival in environments with high levels of DNA-damaging agents.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| |
Collapse
|
3
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
4
|
Sharma DK, Soni I, Misra HS, Rajpurohit YS. Natural transformation-specific DprA coordinate DNA double-strand break repair pathways in heavily irradiated D. radiodurans. Appl Environ Microbiol 2024; 90:e0194823. [PMID: 38193676 PMCID: PMC10880594 DOI: 10.1128/aem.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
5
|
Chaudhary R, Kota S, Misra HS. DivIVA Phosphorylation Affects Its Dynamics and Cell Cycle in Radioresistant Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0314122. [PMID: 36744915 PMCID: PMC10100863 DOI: 10.1128/spectrum.03141-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 02/07/2023] Open
Abstract
DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- School of Science, GITAM, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
6
|
Chaudhary R, Mishra S, Maurya GK, Rajpurohit YS, Misra HS. FtsZ phosphorylation brings about growth arrest upon DNA damage in Deinococcus radiodurans. FASEB Bioadv 2023; 5:27-42. [PMID: 36643897 PMCID: PMC9832530 DOI: 10.1096/fba.2022-00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
The polymerization/depolymerization dynamics of FtsZ play a pivotal role in cell division in the majority of the bacteria. Deinococcus radiodurans, a radiation-resistant bacterium, shows an arrest of growth in response to DNA damage with no change in the level of FtsZ. This bacterium does not deploy LexA/RecA type of DNA damage response and cell cycle regulation, and its genome does not encode SulA homologues of Escherichia coli, which attenuate FtsZ functions in response to DNA damage in other bacteria. A radiation-responsive Ser/Thr quinoprotein kinase (RqkA), characterized for its role in radiation resistance in this bacterium, could phosphorylate several cognate proteins, including FtsZ (drFtsZ) at Serine 235 (S235) and Serine 335 (S335) residues. Here, we reported the detailed characterization of S235 and S335 phosphorylation effects in the regulation of drFtsZ functions and demonstrated that the phospho-mimetic replacements of these residues in drFtsZ had grossly affected its functions that could result in cell cycle arrest in response to DNA damage in D. radiodurans. Interestingly, the phospho-ablative replacements were found to be nearly similar to drFtsZ, whereas the phospho-mimetic mutant lost the wild-type protein's signature characteristics, including its dynamics under normal conditions. The kinetics of post-bleaching recovery for drFtsZ and phospho-mimetic mutant were nearly similar at 2 h post-irradiation recovery but were found to be different under normal conditions. These results highlighted the role of S/T phosphorylation in the regulation of drFtsZ functions and cell cycle arrest in response to DNA damage, which is demonstrated for the first time, in any bacteria.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | - Shruti Mishra
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | | | - Yogendra S. Rajpurohit
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | - Hari S. Misra
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
7
|
Characterization of DNA Processing Protein A (DprA) of the Radiation-Resistant Bacterium Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0347022. [PMID: 36453941 PMCID: PMC9769556 DOI: 10.1128/spectrum.03470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Environmental DNA uptake by certain bacteria and its integration into their genome create genetic diversity and new phenotypes. DNA processing protein A (DprA) is part of a multiprotein complex and facilitates the natural transformation (NT) phenotype in most bacteria. Deinococcus radiodurans, an extremely radioresistant bacterium, is efficient in NT, and its genome encodes nearly all of the components of the natural competence complex. Here, we have characterized the DprA protein of this bacterium (DrDprA) for the known characteristics of DprA proteins of other bacteria and the mechanisms underlying the DNA-RecA interaction. DrDprA has three domains. In vitro studies showed that purified recombinant DrDprA binds to both single-strand DNA (ssDNA) and double-strand DNA (dsDNA) and is able to protect ssDNA from nucleolytic degradation. DrDprA showed a strong interaction with DrRecA and facilitated RecA-catalyzed functions in vivo. Mutational studies identified DrDprA amino acid residues crucial for oligomerization, the interaction with DrRecA, and DNA binding. Furthermore, we showed that both oligomerization and DNA binding properties of DrDprA are integral to its support of the DrRecA-catalyzed strand exchange reaction (SER) in vitro. Together, these data suggested that DrDprA is largely structurally conserved with other DprA homologs but shows some unique structure-function features like the existence of an additional C-terminal Drosophila melanogaster Miasto-like protein 1 (DML1) domain, equal affinities for ssDNA and dsDNA, and the collective roles of oligomerization and DNA binding properties in supporting DrRecA functions. IMPORTANCE Bacteria can take up extracellular DNA (eDNA) by natural transformation (NT). Many bacteria, including Deinococcus radiodurans, have constitutive competence systems and can take up eDNA throughout their growth phase. DprA (DNA processing protein A) is a transformation-specific recombination mediator protein (RMP) that plays a role in bacterial NT, and the absence of this gene significantly reduces the transformation efficiencies of both chromosomal and plasmid DNA. NT helps bacteria survive under adverse conditions and contributes to genetic diversity in bacteria. The present work describes the characterization of DprA from D. radiodurans and will add to the existing knowledge of DprA biology.
Collapse
|
8
|
Rajpurohit YS, Sharma DK, Misra HS. Involvement of Serine / Threonine protein kinases in DNA damage response and cell division in bacteria. Res Microbiol 2021; 173:103883. [PMID: 34624492 DOI: 10.1016/j.resmic.2021.103883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The roles of Serine/Threonine protein kinases (STPKs) in bacterial physiology, including bacterial responses to nutritional stresses and under pathogenesis have been well documented. STPKs roles in bacterial cell cycle regulation and DNA damage response have not been much emphasized, possibly because the LexA/RecA type SOS response became the synonym to DNA damage response and cell cycle regulation in bacteria. This review summarizes current knowledge of STPKs genetics, domain organization, and their roles in DNA damage response and cell division regulation in bacteria.
Collapse
Affiliation(s)
- Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| |
Collapse
|
9
|
Rajpurohit YS, Sharma DK, Misra HS. PprA Protein Inhibits DNA Strand Exchange and ATP Hydrolysis of Deinococcus RecA and Regulates the Recombination in Gamma-Irradiated Cells. Front Cell Dev Biol 2021; 9:636178. [PMID: 33959605 PMCID: PMC8093518 DOI: 10.3389/fcell.2021.636178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
10
|
Maurya GK, Chaudhary R, Pandey N, Misra HS. Molecular insights into replication initiation in a multipartite genome harboring bacterium Deinococcus radiodurans. J Biol Chem 2021; 296:100451. [PMID: 33626388 PMCID: PMC7988490 DOI: 10.1016/j.jbc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Neha Pandey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, University of Mumbai, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
11
|
Chen Z, Tang Y, Hua Y, Zhao Y. Structural features and functional implications of proteins enabling the robustness of Deinococcus radiodurans. Comput Struct Biotechnol J 2020; 18:2810-2817. [PMID: 33133422 PMCID: PMC7575645 DOI: 10.1016/j.csbj.2020.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Deinococcus radiodurans can survive under extreme conditions, including high doses of DNA damaging agents and ionizing radiation, desiccation, and oxidative stress. Both the efficient cellular DNA repair machinery and antioxidation systems contribute to the extreme resistance of this bacterium, making it an ideal organism for studying the cellular mechanisms of environmental adaptation. The number of stress-related proteins identified in this bacterium has mushroomed in the past two decades. The newly identified proteins reveal both commonalities and diversity of structure, mechanism, and function, which impact a wide range of cellular functions. Here, we review the unique and general structural features of these proteins and discuss how these studies improve our understanding of the environmental stress adaptation mechanisms of D. radiodurans.
Collapse
Affiliation(s)
- Zijing Chen
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuyue Tang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Sharma DK, Bihani SC, Siddiqui MQ, Misra HS, Rajpurohit YS. WD40 domain of RqkA regulates its kinase activity and role in extraordinary radioresistance of D. radiodurans. J Biomol Struct Dyn 2020; 40:1246-1259. [PMID: 32990194 DOI: 10.1080/07391102.2020.1824810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RqkA, a DNA damage responsive serine/threonine kinase, is characterized for its role in DNA repair and cell division in D. radiodurans. It has a unique combination of a kinase domain at N-terminus and a WD40 type domain at C-terminus joined through a linker. WD40 domain is comprised of eight β-propeller repeats held together via 'tryptophan-docking motifs' and forming a typical 'velcro' closure structure. RqkA mutants lacking the WD40 region (hereafter referred to as WD mutant) could not complement RqkA loss in γ radiation resistance in D. radiodurans and lacked γ radiation-mediated activation of kinase activity in vivo. WD mutants failed to phosphorylate its cognate substrate (e.g. DrRecA) in surrogate E. coli cells. Unlike wild-type enzyme, the kinase activity of its WD40 mutants was not stimulated by pyrroloquinoline quinine (PQQ) indicating the role of the WD motifs in PQQ interaction and stimulation of its kinase activity. Together, results highlighted the importance of the WD40 domain in the regulation of RqkA kinase signaling functions in vivo, and thus, the role of WD40 domain in the regulation of any STPK is first time demonstrated in bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhirendra K Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Subhash C Bihani
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mohammad Q Siddiqui
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
13
|
Joshi SR, Jagtap S, Basu B, Deobagkar DD, Ghosh P. Construction, analysis and validation of co-expression network to understand stress adaptation in Deinococcus radiodurans R1. PLoS One 2020; 15:e0234721. [PMID: 32579573 PMCID: PMC7314050 DOI: 10.1371/journal.pone.0234721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Systems biology based approaches have been effectively utilized to mine high throughput data. In the current study, we have performed system-level analysis for Deinococcus radiodurans R1 by constructing a gene co-expression network based on several microarray datasets available in the public domain. This condition-independent network was constructed by Weighted Gene Co-expression Network Analysis (WGCNA) with 61 microarray samples from 9 different experimental conditions. We identified 13 co-expressed modules, of which, 11 showed functional enrichments of one or more pathway/s or biological process. Comparative analysis of differentially expressed genes and proteins from radiation and desiccation stress studies with our co-expressed modules revealed the association of cyan with radiation response. Interestingly, two modules viz darkgreen and tan was associated with radiation as well as desiccation stress responses. The functional analysis of these modules showed enrichment of pathways important for adaptation of radiation or desiccation stress. To decipher the regulatory roles of these stress responsive modules, we identified transcription factors (TFs) and then calculated a Biweight mid correlation between modules hub gene and the identified TFs. We obtained 7 TFs for radiation and desiccation responsive modules. The expressions of 3 TFs were validated in response to gamma radiation using qRT-PCR. Along with the TFs, selected close neighbor genes of two important TFs, viz., DR_0997 (CRP) and DR_2287 (AsnC family transcriptional regulator) in the darkgreen module were also validated. In our network, among 13 hub genes associated with 13 modules, the functionality of 5 hub genes which are annotated as hypothetical proteins (hypothetical hub genes) in D. radiodurans genome has been revealed. Overall the study provided a better insight of pathways and regulators associated with relevant DNA damaging stress response in D. radiodurans.
Collapse
Affiliation(s)
- Suraj R. Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Surabhi Jagtap
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepti D. Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- * E-mail: ,
| |
Collapse
|
14
|
The interplay between Mn and Fe in Deinococcus radiodurans triggers cellular protection during paraquat-induced oxidative stress. Sci Rep 2019; 9:17217. [PMID: 31748604 PMCID: PMC6868200 DOI: 10.1038/s41598-019-53140-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.
Collapse
|
15
|
Guanine Quadruplex DNA Regulates Gamma Radiation Response of Genome Functions in the Radioresistant Bacterium Deinococcus radiodurans. J Bacteriol 2019; 201:JB.00154-19. [PMID: 31235513 DOI: 10.1128/jb.00154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radiodurans IMPORTANCE Deinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.
Collapse
|
16
|
Sharma DK, Siddiqui MQ, Gadewal N, Choudhary RK, Varma AK, Misra HS, Rajpurohit YS. Phosphorylation of deinococcal RecA affects its structural and functional dynamics implicated for its roles in radioresistance of Deinococcus radiodurans. J Biomol Struct Dyn 2019; 38:114-123. [PMID: 30688163 DOI: 10.1080/07391102.2019.1568916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deinococcus RecA (DrRecA) protein is a key repair enzyme and contributes to efficient DNA repair of Deinococcus radiodurans. Phosphorylation of DrRecA at Y77 (tyrosine 77) and T318 (threonine 318) residues modifies the structural and conformational switching that impart the efficiency and activity of DrRecA. Dynamics comparisons of DrRecA with its phosphorylated analogues support the idea that phosphorylation of Y77 and T318 sites could change the dynamics and conformation plasticity of DrRecA. Furthermore, docking studies showed that phosphorylation increases the binding preference of DrRecA towards dATP versus ATP and for double-strand DNA versus single-strand DNA. This work supporting the idea that phosphorylation can modulate the crucial functions of this protein and having good concordance with the experimental data. AbbreviationsDrRecADeinococcus RecADSBDNA double-strand breakshDNAheteroduplex DNASTYPKserine/threonine/tyrosine protein kinaseT318threonine 318Y77tyrosine 77Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Nikhil Gadewal
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Rajan Kumar Choudhary
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Ashok Kumar Varma
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
18
|
Phosphorylation of FtsZ and FtsA by a DNA Damage-Responsive Ser/Thr Protein Kinase Affects Their Functional Interactions in Deinococcus radiodurans. mSphere 2018; 3:3/4/e00325-18. [PMID: 30021877 PMCID: PMC6052341 DOI: 10.1128/msphere.00325-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LexA/RecA-type SOS response is the only characterized mechanism of DNA damage response in bacteria. It regulates cell cycle by attenuating the functions of cell division protein FtsZ and inducing the expression of DNA repair proteins. There are bacteria, including Deinococcus radiodurans, that do not show this classical SOS response. D. radiodurans is known for its extraordinary resistance to gamma radiation, and a DNA damage-responsive Ser/Thr protein kinase (RqkA) has been characterized for its role in radioresistance. RqkA phosphorylates a large number of proteins in solution. The phosphorylation of RecA and PprA by RqkA enhanced their activities. FtsZ phosphorylation is inducible by gamma radiation in wild-type D. radiodurans but not in an rqkA mutant. Phosphorylation affected the interaction of FtsZ and FtsA in this bacterium. This study, therefore, brought forth some findings that might lead to the discovery of a new mechanism regulating the bacterial cell cycle in response to DNA damage. Deinococcus radiodurans, a highly radioresistant bacterium, does not show LexA-dependent regulation of recA expression in response to DNA damage. On the other hand, phosphorylation of DNA repair proteins such as PprA and RecA by a DNA damage-responsive Ser/Thr protein kinase (STPK) (RqkA) could improve their DNA metabolic activities as well as their roles in the radioresistance of D. radiodurans. Here we report RqkA-mediated phosphorylation of cell division proteins FtsZ and FtsA in vitro and in surrogate Escherichia coli bacteria expressing RqkA. Mass spectrometric analysis mapped serine 235 and serine 335 in FtsZ and threonine 272, serine 370, and serine 386 in FtsA as potential phosphorylation sites. Although the levels of FtsZ did not change during postirradiation recovery (PIR), phosphorylation of both FtsZ and FtsA showed a kinetic change during PIR. However, in an rqkA mutant of D. radiodurans, though FtsZ underwent phosphorylation, no kinetic change in phosphorylation was observed. Further, RqkA adversely affected FtsA interaction with FtsZ, and phosphorylated FtsZ showed higher GTPase activity than unphosphorylated FtsZ. These results suggest that both FtsZ and FtsA are phosphoproteins in D. radiodurans. The increased phosphorylation of FtsZ in response to radiation damage in the wild-type strain but not in an rqkA mutant seems to be regulating the functional interaction of FtsZ with FtsA. For the first time, we demonstrate the role of a DNA damage-responsive STPK (RqkA) in the regulation of functional interaction of cell division proteins in this bacterium. IMPORTANCE The LexA/RecA-type SOS response is the only characterized mechanism of DNA damage response in bacteria. It regulates cell cycle by attenuating the functions of cell division protein FtsZ and inducing the expression of DNA repair proteins. There are bacteria, including Deinococcus radiodurans, that do not show this classical SOS response. D. radiodurans is known for its extraordinary resistance to gamma radiation, and a DNA damage-responsive Ser/Thr protein kinase (RqkA) has been characterized for its role in radioresistance. RqkA phosphorylates a large number of proteins in solution. The phosphorylation of RecA and PprA by RqkA enhanced their activities. FtsZ phosphorylation is inducible by gamma radiation in wild-type D. radiodurans but not in an rqkA mutant. Phosphorylation affected the interaction of FtsZ and FtsA in this bacterium. This study, therefore, brought forth some findings that might lead to the discovery of a new mechanism regulating the bacterial cell cycle in response to DNA damage.
Collapse
|
19
|
Misra HS, Maurya GK, Chaudhary R, Misra CS. Interdependence of bacterial cell division and genome segregation and its potential in drug development. Microbiol Res 2018; 208:12-24. [DOI: 10.1016/j.micres.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|
20
|
Siddiqui MQ, Rajpurohit YS, Thapa PS, Maurya GK, Banerjee K, Khan MA, Panda P, Hasan SK, Gadewal N, Misra HS, Varma AK. Studies of protein-protein interactions in Fanconi anemia pathway to unravel the DNA interstrand crosslink repair mechanism. Int J Biol Macromol 2017; 104:1338-1344. [PMID: 28684355 DOI: 10.1016/j.ijbiomac.2017.05.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022]
Abstract
Fanconi anemia (FA), a cancer predisposition syndrome exhibits hallmark feature of radial chromosome formation, and hypersensitivity to DNA crosslinking agents. A set of FA pathway proteins mainly FANCI, FANCD2 and BRCA2 are expressed to repair the covalent crosslink between the dsDNA. However, FA, BRCA pathways play an important role in DNA ICL repair as well as in homologous recombination repair, but the presumptive role of FA-BRCA proteins has not clearly explored particularly in context to function associated protein-protein interactions (PPIs). Here, in-vivo, in-vitro and in-silico studies have been performed for functionally relevant domains of FANCI, FANCD2 and BRCA2. To our conclusion, FANCI ARM repeat interacts with FANCD2 CUE domain and BRCA2 C-terminal region. Interestingly, FANCD2 CUE domain also interacts strongly with BRCA2 C-terminal region. Interactions between BRCA2 CTR and functionally relevant mutations Ser222Ala (cell cycle checkpoint mutant) and Leu231Arg (DNA ICL repair mutant) present in FANCD2 CUE domain have been analysed. To our finding, these mutations abrogate the binding between FANCD2 CUE domain and BRCA2 CTR. Furthermore, (1) different domain of FANCI, FANCD2 and BRCA2 are playing important role in PPIs, (2) mutations cause the impairment in the PPIs which in turn may disrupt the DNA ICL repair mechanism.
Collapse
Affiliation(s)
- Mohd Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | | | - Pankaj S Thapa
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Ganesh Kumar Maurya
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Kuheli Banerjee
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Mudassar Ali Khan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Pragnya Panda
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India
| | - Syed K Hasan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
21
|
Siddiqui MQ, Choudhary RK, Thapa P, Kulkarni N, Rajpurohit YS, Misra HS, Gadewal N, Kumar S, Hasan SK, Varma AK. Structural and biophysical properties of h-FANCI ARM repeat protein. J Biomol Struct Dyn 2016; 35:3032-3042. [PMID: 27686023 DOI: 10.1080/07391102.2016.1235514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fanconi anemia complementation groups - I (FANCI) protein facilitates DNA ICL (Inter-Cross-link) repair and plays a crucial role in genomic integrity. FANCI is a 1328 amino acids protein which contains armadillo (ARM) repeats and EDGE motif at the C-terminus. ARM repeats are functionally diverse and evolutionarily conserved domain that plays a pivotal role in protein-protein and protein-DNA interactions. Considering the importance of ARM repeats, we have explored comprehensive in silico and in vitro approach to examine folding pattern. Size exclusion chromatography, dynamic light scattering (DLS) and glutaraldehyde crosslinking studies suggest that FANCI ARM repeat exist as monomer as well as in oligomeric forms. Circular dichroism (CD) and fluorescence spectroscopy results demonstrate that protein has predominantly α- helices and well-folded tertiary structure. DNA binding was analysed using electrophoretic mobility shift assay by autoradiography. Temperature-dependent CD, Fluorescence spectroscopy and DLS studies concluded that protein unfolds and start forming oligomer from 30°C. The existence of stable portion within FANCI ARM repeat was examined using limited proteolysis and mass spectrometry. The normal mode analysis, molecular dynamics and principal component analysis demonstrated that helix-turn-helix (HTH) motif present in ARM repeat is highly dynamic and has anti-correlated motion. Furthermore, FANCI ARM repeat has HTH structural motif which binds to double-stranded DNA.
Collapse
Affiliation(s)
- Mohd Quadir Siddiqui
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| | - Rajan Kumar Choudhary
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| | - Pankaj Thapa
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| | - Neha Kulkarni
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| | - Yogendra S Rajpurohit
- b Molecular Biology Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Hari S Misra
- b Molecular Biology Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Nikhil Gadewal
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| | - Satish Kumar
- c Department of Biochemistry & Bioinformatics Centre , Mahatma Gandhi Institute of Medical Sciences , Sevagram ( Wardha ) 442102 , India
| | - Syed K Hasan
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| | - Ashok K Varma
- a Tata Memorial Centre, Advanced Centre for Treatment , Research and Education in Cancer , Kharghar, Navi Mumbai , Maharashtra 410 210 , India
| |
Collapse
|
22
|
Maurya GK, Modi K, Misra HS. Divisome and segrosome components of Deinococcus radiodurans interact through cell division regulatory proteins. Microbiology (Reading) 2016; 162:1321-1334. [DOI: 10.1099/mic.0.000330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ganesh K. Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Mumbai- 400094, India
| | - Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Mumbai- 400094, India
| |
Collapse
|
23
|
Rajpurohit YS, Bihani SC, Waldor MK, Misra HS. Phosphorylation of Deinococcus radiodurans RecA Regulates Its Activity and May Contribute to Radioresistance. J Biol Chem 2016; 291:16672-85. [PMID: 27255712 DOI: 10.1074/jbc.m116.736389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans has a remarkable capacity to survive exposure to extreme levels of radiation that cause hundreds of DNA double strand breaks (DSBs). DSB repair in this bacterium depends on its recombinase A protein (DrRecA). DrRecA plays a pivotal role in both extended synthesis-dependent strand annealing and slow crossover events of DSB repair during the organism's recovery from DNA damage. The mechanisms that control DrRecA activity during the D. radiodurans response to γ radiation exposure are unknown. Here, we show that DrRecA undergoes phosphorylation at Tyr-77 and Thr-318 by a DNA damage-responsive serine threonine/tyrosine protein kinase (RqkA). Phosphorylation modifies the activity of DrRecA in several ways, including increasing its affinity for dsDNA and its preference for dATP over ATP. Strand exchange reactions catalyzed by phosphorylated versus unphosphorylated DrRecA also differ. In silico analysis of DrRecA structure support the idea that phosphorylation can modulate crucial functions of this protein. Collectively, our findings suggest that phosphorylation of DrRecA enables the recombinase to selectively use abundant dsDNA substrate present during post-irradiation recovery for efficient DSB repair, thereby promoting the extraordinary radioresistance of D. radiodurans.
Collapse
Affiliation(s)
| | - Subhash C Bihani
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India and
| | - Matthew K Waldor
- the Division of Infectious Diseases and Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
24
|
Lin L, Li T, Dai S, Yu J, Chen X, Wang L, Wang Y, Hua Y, Tian B. Autoinducer-2 signaling is involved in regulation of stress-related genes of Deinococcus radiodurans. Arch Microbiol 2015; 198:43-51. [PMID: 26510931 DOI: 10.1007/s00203-015-1163-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/04/2015] [Accepted: 10/12/2015] [Indexed: 12/01/2022]
Abstract
Autoinducer-2 (AI-2) serves as a quorum-sensing signaling molecule that mediates both intraspecies and interspecies communication among bacteria, and plays critical roles in regulating various bacterial behaviors. In the present study, we investigated the functions of AI-2 signaling in the extremophilic bacterium Deinococcus radiodurans R1 by construction of the LuxS gene disruption mutant, survival phenotype assay and gene transcription assay. The gene mutant (DRΔLuxS), which was unable to produce AI-2, was significantly more sensitive to both gamma radiation and H2O2 compared with the wild-type strain. Addition of the wild-type-derived spent medium into the cell culture of DRΔLuxS fully restored the radioresistance of D. radiodurans. A higher level of reactive oxygen species accumulated in the mutant compared with the wild type under normal or oxidative stress. Quantitative real-time PCR assays showed that transcriptional levels of stress-related proteins, including catalase, extracellular nuclease, Dps-1 and ABC transporters, were decreased in DRΔLuxS, indicating that AI-2 is involved in regulation of stress-related genes of D. radiodurans. Hence, AI-2 signaling may contribute to the extreme resistance of D. radiodurans to radiation and oxidative stresses.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jiangliu Yu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Xiuqin Chen
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yunguang Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China.
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Munteanu AC, Uivarosi V, Andries A. Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles 2015; 19:707-19. [PMID: 26040496 DOI: 10.1007/s00792-015-0759-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/17/2015] [Indexed: 12/17/2022]
Abstract
The deleterious effects of ionizing radiation are a major concern of the modern world. In the last decades, outstanding interest has been given to developing new therapeutic tools designed for protection against the toxic effects of ionizing radiation. Deinococcus spp. are among the most radioresistant organisms on Earth, being able to survive extreme doses of radiation, 1000-fold higher than most vertebrates. The molecular mechanisms underlying DNA repair and biomolecular protection, which are responsible for the remarkable radioresistance of Deinococcus bacteria, have been a debatable subject for the last 60 years. This paper is focused on the most recent findings regarding the molecular background of radioresistance and on Deinococcus bacteria response to oxidative stress. Novel proteins and genes involved in the highly regulated DNA repair processes, and enzymatic and non- enzymatic antioxidant systems are presented. In addition, a recently proposed mechanism that may contribute to oxidative damage protection in Deinococcus bacteria is discussed. A better understanding of these molecular mechanisms may draw future perspectives for counteracting radiation-related toxicity.
Collapse
Affiliation(s)
- Alexandra- Cristina Munteanu
- Department of Industrial Drugs and Pharmaceutical Biotechnology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6, Traian Vuia Str., 020956, Bucharest, Romania,
| | | | | |
Collapse
|
26
|
Ishino Y, Narumi I. DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 2015; 25:103-12. [PMID: 26056771 DOI: 10.1016/j.mib.2015.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/22/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The genome of a living cell is continuously under attack by exogenous and endogenous genotoxins. Especially, life at high temperature inflicts additional stress on genomic DNA, and very high rates of potentially mutagenic DNA lesions, including deamination, depurination, and oxidation, are expected. However, the spontaneous mutation rates in hyperthermophiles are similar to that in Escherichia coli, and it is interesting to determine how the hyperthermophiles preserve their genomes under such grueling environmental conditions. In addition, organisms with extremely radioresistant phenotypes are targets for investigating special DNA repair mechanisms in extreme environments. Multiple DNA repair mechanisms have evolved in all organisms to ensure genomic stability, by preventing impediments that result in genome destabilizing lesions.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-8581, Japan.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
27
|
Dulermo R, Onodera T, Coste G, Passot F, Dutertre M, Porteron M, Confalonieri F, Sommer S, Pasternak C. Identification of new genes contributing to the extreme radioresistance of Deinococcus radiodurans using a Tn5-based transposon mutant library. PLoS One 2015; 10:e0124358. [PMID: 25884619 PMCID: PMC4401554 DOI: 10.1371/journal.pone.0124358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.
Collapse
Affiliation(s)
- Rémi Dulermo
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Takefumi Onodera
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Geneviève Coste
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fanny Passot
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Martine Porteron
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fabrice Confalonieri
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Suzanne Sommer
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Cécile Pasternak
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
28
|
Appukuttan D, Seo HS, Jeong S, Im S, Joe M, Song D, Choi J, Lim S. Expression and mutational analysis of DinB-like protein DR0053 in Deinococcus radiodurans. PLoS One 2015; 10:e0118275. [PMID: 25706748 PMCID: PMC4338110 DOI: 10.1371/journal.pone.0118275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
In order to understand the mechanism governing radiation resistance in Deinococcus radiodurans, current efforts are aimed at identifying potential candidates from a large repertoire of unique Deinococcal genes and protein families. DR0053 belongs to the DinB/YfiT protein family, which is an over-represented protein family in D. radiodurans. We observed that dr0053 transcript levels were highly induced in response to gamma radiation (γ-radiation) and mitomycin C (MMC) exposure depending on PprI, RecA and the DrtR/S two-component signal transduction system. Protein profiles demonstrated that DR0053 is a highly induced protein in cultures exposed to 10 kGy γ-radiation. We were able to determine the transcriptional start site of dr0053, which was induced upon irradiation, and to assign the 133-bp promoter region of dr0053 as essential for radiation responsiveness through primer extension and promoter deletion analyses. A dr0053 mutant strain displayed sensitivity to γ-radiation and MMC exposure, but not hydrogen peroxide, suggesting that DR0053 helps cells recover from DNA damage. Bioinformatic analyses revealed that DR0053 is similar to the Bacillus subtilis protein YjoA, which is a substrate of bacterial protein-tyrosine kinases. Taken together, the DNA damage-inducible (din) gene dr0053 may be regulated at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Deepti Appukuttan
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunwook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunghun Im
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Minho Joe
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Dusup Song
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jungjoon Choi
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
29
|
Modi K, Misra HS. Dr-FtsA, an actin homologue in Deinococcus radiodurans differentially affects Dr-FtsZ and Ec-FtsZ functions in vitro. PLoS One 2014; 9:e115918. [PMID: 25551229 PMCID: PMC4281207 DOI: 10.1371/journal.pone.0115918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/29/2014] [Indexed: 11/24/2022] Open
Abstract
The Deinococcus radiodurans genome encodes homologues of divisome proteins including FtsZ and FtsA. FtsZ of this bacterium (Dr-FtsZ) has been recently characterized. In this paper, we study FtsA of D. radiodurans (Dr-FtsA) and its involvement in regulation of FtsZ function. Recombinant Dr-FtsA showed neither ATPase nor GTPase activity and its polymerization was ATP dependent. Interestingly, we observed that Dr-FtsA, when compared with E. coli FtsA (Ec-FtsA), has lower affinity for both Dr-FtsZ and Ec-FtsZ. Also, Dr-FtsA showed differential effects on GTPase activity and sedimentation characteristics of Dr-FtsZ and Ec-FtsZ. For instance, Dr-FtsA stimulated GTPase activity of Dr-FtsZ while GTPase activity of Ec-FtsZ was reduced in the presence of Dr-FtsA. Stimulation of GTPase activity of Dr-FtsZ by Dr-FtsA resulted in depolymerization of Dr-FtsZ. Dr-FtsA effects on GTPase activity and polymerization/depolymerisation characteristics of Dr-FtsZ did not change significantly in the presence of ATP. Recombinant E. coli expressing Dr-FtsA showed cell division inhibition in spite of in trans expression of Dr-FtsZ in these cells. These results suggested that Dr-FtsA, although it lacks ATPase activity, is still functional and differentially affects Dr-FtsZ and Ec-FtsZ function in vitro.
Collapse
Affiliation(s)
- Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- * E-mail:
| |
Collapse
|
30
|
Modi KM, Tewari R, Misra HS. FtsZDr, a tubulin homologue in radioresistant bacterium Deinococcus radiodurans is characterized as a GTPase exhibiting polymerization/depolymerization dynamics in vitro and FtsZ ring formation in vivo. Int J Biochem Cell Biol 2014; 50:38-46. [PMID: 24502896 DOI: 10.1016/j.biocel.2014.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
Abstract
The GTPase-dependent polymerization/depolymerization dynamics of FtsZ regulate bacterial cell division in vivo. Deinococcus radiodurans is better known for its extraordinary radioresistance and therefore, the characterization of FtsZ of this bacterium (FtsZDr) would be required to understand the mechanisms underlying regulation of cell division in response to DNA damage. Recombinant FtsZDr bound to GTP and showed GTPase activity. It produced bundles of protofilaments in the presence of either GTP or Mg2+ ions. But the formation of the higher size ordered structures required both GTP and Mg2+ in vitro. It showed polymerization/depolymerization dynamics as a function of GTP and Mg2+. Interestingly, ATP interacted with FtsZDr and stimulated its GTPase activity by ∼2-fold possibly by increasing both substrate affinity and rate of reaction. FtsZDr-GFP expressing in D. radiodurans produced typical Z ring perpendicular to the plane of first cell division. These results suggested that FtsZDr is a GTPase in vitro and produces typical Z ring at the mid cell position in D. radiodurans.
Collapse
Affiliation(s)
- Kruti Mehta Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Raghvendra Tewari
- Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| |
Collapse
|
31
|
PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases. PLoS One 2014; 9:e85288. [PMID: 24454836 PMCID: PMC3893189 DOI: 10.1371/journal.pone.0085288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
PprA is known to contribute to Deinococcus radiodurans' remarkable capacity to survive a variety of genotoxic assaults. The molecular bases for PprA's role(s) in the maintenance of the damaged D. radiodurans genome are incompletely understood, but PprA is thought to promote D. radiodurans's capacity for DSB repair. PprA is found in a multiprotein DNA processing complex along with an ATP type DNA ligase, and the D. radiodurans toposiomerase IB (DraTopoIB) as well as other proteins. Here, we show that PprA is a key contributor to D. radiodurans resistance to nalidixic acid (Nal), an inhibitor of topoisomerase II. Growth of wild type D. radiodurans and a pprA mutant were similar in the absence of exogenous genotoxic insults; however, the pprA mutant exhibited marked growth delay and a higher frequency of anucleate cells following treatment with DNA-damaging agents. We show that PprA interacts with both DraTopoIB and the Gyrase A subunit (DraGyrA) in vivo and that purified PprA enhances DraTopoIB catalysed relaxation of supercoiled DNA. Thus, besides promoting DNA repair, our findings suggest that PprA also contributes to preserving the integrity of the D. radiodurans genome following DNA damage by interacting with DNA topoisomerases and by facilitating the actions of DraTopoIB.
Collapse
|