1
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research progress on N 6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:57-70. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
2
|
Yan S, Ji J, Zhang Z, Imam M, Chen H, Zhang D, Wang J. Targeting the crosstalk between estrogen receptors and membrane growth factor receptors in breast cancer treatment: Advances and opportunities. Biomed Pharmacother 2024; 175:116615. [PMID: 38663101 DOI: 10.1016/j.biopha.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Estrogens play a critical role in the initiation and progression of breast cancer. Estrogen receptor (ER)α, ERβ, and G protein-coupled estrogen receptor are the primary receptors for estrogen in breast cancer. These receptors are mainly activated by binding with estrogens. The crosstalk between ERs and membrane growth factor receptors creates additional pathways that amplify the effects of their ligands and promote tumor growth. This crosstalk may cause endocrine therapy resistance in ERα-positive breast cancer. Furthermore, this may explain the resistance to anti-human epidermal growth factor receptor-2 (HER2) treatment in ERα-/HER2-positive breast cancer and chemotherapy resistance in triple-negative breast cancer. Accordingly, it is necessary to understand the complex crosstalk between ERs and growth factor receptors. In this review, we delineate the crosstalk between ERs and membrane growth factor receptors in breast cancer. Moreover, this review highlights the current progress in clinical treatment and discusses how pharmaceuticals target the crosstalk. Lastly, we discuss the current challenges and propose potential solutions regarding the implications of targeting crosstalk via pharmacological inhibition. Overall, the present review provides a landscape of the crosstalk between ERs and membrane growth factor receptors in breast cancer, along with valuable insights for future studies and clinical treatments using a chemotherapy-sparing regimen to improve patient quality of life.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jiale Ji
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhijie Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Murshid Imam
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Hong Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Duo Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jinpeng Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
3
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
4
|
Piñon-Teal WL, Ogilvie JM. G protein-coupled estrogen receptor expression in postnatal developing mouse retina. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1331298. [PMID: 38984123 PMCID: PMC11182193 DOI: 10.3389/fopht.2024.1331298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 07/11/2024]
Abstract
Introduction Estrogen has emerged as a multifaceted signaling molecule in the retina, playing an important role in neural development and providing neuroprotection in adults. It interacts with two receptor types: classical estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen receptor (Gper). Gper differs from classical ERs in structure, localization, and signaling. Here we provide the first report of the temporal and spatial properties of Gper transcript and protein expression in the developing and mature mouse retina. Methods We applied qRT-PCR to determine Gper transcript expression in wild type mouse retina from P0-P21. Immunohistochemistry and Western blot were used to determine Gper protein expression and localization at the same time points. Results Gper expression showed a 6-fold increase during postnatal development, peaking at P14. Relative total Gper expression exhibited a significant decrease during retinal development, although variations emerged in the timing of changes among different forms of the protein. Gper immunoreactivity was seen in retinal ganglion cells (RGCs) throughout development and also in somas in the position of horizontal cells at early time points. Immunoreactivity was observed in the cytoplasm and Golgi at all time points, in the nucleus at early time points, and in RGC axons as the retina matured. Discussion In conclusion, our study illuminates the spatial and temporal expression patterns of Gper in the developing mouse retina and provides a vital foundation for further investigations into the role of Gper in retinal development and degeneration.
Collapse
Affiliation(s)
| | - Judith Mosinger Ogilvie
- Department of Biology, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
5
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
6
|
Nohara T, Tsuji M, Oguchi T, Momma Y, Ohashi H, Nagata M, Ito N, Yamamoto K, Murakami H, Kiuchi Y. Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines 2023; 11:2135. [PMID: 37626631 PMCID: PMC10452439 DOI: 10.3390/biomedicines11082135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Amyloid-β (Aβ) is one of the causes of Alzheimer's disease (AD), damaging nerve membranes and inducing neurotoxicity. AD is more prevalent in female patients than in male patients, and women are more susceptible to developing AD due to the decline in estrogen levels around menopause. Raloxifene, a selective estrogen receptor modulator, exhibits protective effects by activating the transmembrane G-protein-coupled estrogen receptor (GPER). Additionally, raloxifene prevents mild cognitive impairment and restores cognition. However, the influence of raloxifene via GPER on highly toxic Aβ-oligomers (Aβo)-induced neurotoxicity remains uncertain. In this study, we investigated the GPER-mediated neuroprotective effects of raloxifene against the neurotoxicity caused by Aβo-induced cytotoxicity. The impact of raloxifene on Aβo-induced cell damage was evaluated using measures such as cell viability, production of reactive oxygen species (ROS) and mitochondrial ROS, peroxidation of cell-membrane phospholipids, and changes in intracellular calcium ion concentration ([Ca2+]i) levels. Raloxifene hindered Aβo-induced oxidative stress and reduced excessive [Ca2+]i, resulting in improved cell viability. Furthermore, these effects of raloxifene were inhibited with pretreatment with a GPER antagonist. Our findings suggest that raloxifene safeguards against Aβo-induced neurotoxicity by modifying oxidative parameters and maintaining [Ca2+]i homeostasis. Raloxifene may prove effective in preventing and inhibiting the progression of AD.
Collapse
Affiliation(s)
- Tetsuhito Nohara
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Tatsunori Oguchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Yutaro Momma
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Hideaki Ohashi
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Miki Nagata
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo 142-8555, Japan;
| | - Naohito Ito
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Ken Yamamoto
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Hidetomo Murakami
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
7
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
8
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
9
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
10
|
Khan MZI, Uzair M, Nazli A, Chen JZ. An overview on Estrogen receptors signaling and its ligands in breast cancer. Eur J Med Chem 2022; 241:114658. [PMID: 35964426 DOI: 10.1016/j.ejmech.2022.114658] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Estrogen governs the regulations of various pathological and physiological actions throughout the body in both males and females. Generally, 17β-estradiol an endogenous estrogen is responsible for different health problems in pre and postmenopausal women. The major activities of endogenous estrogen are executed by nuclear estrogen receptors (ERs) ERα and ERβ while non-genomic cytoplasmic pathways also govern cell growth and apoptosis. Estrogen accomplished a fundamental role in the formation and progression of breast cancer. In this review, we have hyphenated different studies regarding ERs and a thorough and detailed study of estrogen receptors is presented. This review highlights different aspects of estrogens ranging from receptor types, their isoforms, structures, signaling pathways of ERα, ERβ and GPER along with their crystal structures, pathological roles of ER, ER ligands, and therapeutic strategies to overcome the resistance.
Collapse
Affiliation(s)
| | - Muhammad Uzair
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Adila Nazli
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
11
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
12
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
13
|
Lustofin S, Kamińska A, Brzoskwinia M, Cyran J, Kotula-Balak M, Bilińska B, Hejmej A. Nuclear and Membrane Receptors for Sex Steroids Are Involved in the Regulation of Delta/Serrate/LAG-2 Proteins in Rodent Sertoli Cells. Int J Mol Sci 2022; 23:ijms23042284. [PMID: 35216398 PMCID: PMC8876387 DOI: 10.3390/ijms23042284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Delta/Serrate/LAG-2 (DSL) proteins, which serve as ligands for Notch receptors, mediate direct cell–cell interactions involved in the determination of cell fate and functioning. The present study aimed to explore the role of androgens and estrogens, and their receptors in the regulation of DSL proteins in Sertoli cells. To this end, primary rat Sertoli cells and TM4 Sertoli cell line were treated with either testosterone or 17β-estradiol and antagonists of their receptors. To confirm the role of particular receptors, knockdown experiments were performed. mRNA and protein expressions of Jagged1 (JAG1), Delta-like1 (DLL1), and Delta-like4 (DLL4) were analyzed using RT-qPCR, Western blot, and immunofluorescence. Testosterone caused downregulation of JAG1 and DLL1 expression, acting through membrane androgen receptor ZRT- and Irt-like protein 9 (ZIP9) or nuclear androgen receptor (AR), respectively. DLL4 was stimulated by testosterone in the manner independent of AR and ZIP9 in Sertoli cells. The expression of all studied DSL proteins was upregulated by 17β-estradiol. Estrogen action on JAG1 and DLL1 was mediated chiefly via estrogen receptor α (ERα), while DLL4 was controlled via estrogen receptor β (ERβ) and membrane G-protein-coupled estrogen receptor (GPER). To summarize, the co-operation of nuclear and membrane receptors for sex steroids controls DSL proteins in Sertoli cells, contributing to balanced Notch signaling activity in seminiferous epithelium.
Collapse
Affiliation(s)
- Sylwia Lustofin
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Alicja Kamińska
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Małgorzata Brzoskwinia
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Joanna Cyran
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Małgorzata Kotula-Balak
- Department of Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Barbara Bilińska
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Anna Hejmej
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
- Correspondence:
| |
Collapse
|
14
|
Roldán FL, Lozano JJ, Ingelmo-Torres M, Carrasco R, Díaz E, Ramirez-Backhaus M, Rubio J, Reig O, Alcaraz A, Mengual L, Izquierdo L. Clinicopathological and Molecular Prognostic Classifier for Intermediate/High-Risk Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13246338. [PMID: 34944958 PMCID: PMC8699125 DOI: 10.3390/cancers13246338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this report, we identified biomarkers for tumor progression from tissue samples of intermediate/high-risk ccRCC. Using the molecular findings and the clinical data, we developed an improved prognostic model which could help to provide better individualized management recommendations. Abstract The probability of tumor progression in intermediate/high-risk clear cell renal cell carcinoma (ccRCC) is highly variable, underlining the lack of predictive accuracy of the current clinicopathological factors. To develop an accurate prognostic classifier for these patients, we analyzed global gene expression patterns in 13 tissue samples from progressive and non-progressive ccRCC using Illumina Hi-seq 4000. Expression levels of 22 selected differentially expressed genes (DEG) were assessed by nCounter analysis in an independent series of 71 ccRCCs. A clinicopathological-molecular model for predicting tumor progression was developed and in silico validated in a total of 202 ccRCC patients using the TCGA cohort. A total of 1202 DEGs were found between progressive and non-progressive intermediate/high-risk ccRCC in RNAseq analysis, and seven of the 22 DEGs selected were validated by nCounter. Expression of HS6ST2, pT stage, tumor size, and ISUP grade were found to be independent prognostic factors for tumor progression. A risk score generated using these variables was able to distinguish patients at higher risk of tumor progression (HR 7.27; p < 0.001), consistent with the results obtained from the TCGA cohort (HR 2.74; p < 0.002). In summary, a combined prognostic algorithm was successfully developed and validated. This model may aid physicians to select high-risk patients for adjuvant therapy.
Collapse
Affiliation(s)
- Fiorella L. Roldán
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Juan J. Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clinic, 08036 Barcelona, Spain;
| | - Mercedes Ingelmo-Torres
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Raquel Carrasco
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Esther Díaz
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Miguel Ramirez-Backhaus
- Department of Urology, Oncologic Institute of Valencia, 46009 Valencia, Spain; (M.R.-B.); (J.R.)
| | - José Rubio
- Department of Urology, Oncologic Institute of Valencia, 46009 Valencia, Spain; (M.R.-B.); (J.R.)
| | - Oscar Reig
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Antonio Alcaraz
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Lourdes Mengual
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-54-00 (ext. 4820)
| | - Laura Izquierdo
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| |
Collapse
|
15
|
Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. Onco Targets Ther 2021; 14:1969-1980. [PMID: 33762829 PMCID: PMC7982713 DOI: 10.2147/ott.s298438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Local invasion and distant metastasis are the key hallmarks in the aggressive progression of malignant tumors, including the ability of cancer cells to detach from the extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally believed that this malignant behavior is stimulated by epithelial-mesenchymal transition (EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of MSI family, has been prevalently reported to be tightly associated with the advanced clinical stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital roles in EMT. Here, we systematically reviewed the detailed role and signal networks of MSI2 in regulating cancer development, especially in EMT signal transduction, involving EGF, TGF-β, Notch, and Wnt pathways.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
16
|
Ke R, Lok SIS, Singh K, Chow BKC, Janovjak H, Lee LTO. Formation of Kiss1R/GPER Heterocomplexes Negatively Regulates Kiss1R-mediated Signalling through Limiting Receptor Cell Surface Expression. J Mol Biol 2021; 433:166843. [PMID: 33539880 DOI: 10.1016/j.jmb.2021.166843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.
Collapse
Affiliation(s)
- Ran Ke
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Samson Ian Sam Lok
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Billy Kwok Chong Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Harald Janovjak
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
| | - Leo Tsz On Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
17
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
18
|
Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Sims AH, Maggiolini M. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:153. [PMID: 32778144 PMCID: PMC7418191 DOI: 10.1186/s13046-020-01667-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Background Hypoxia plays a relevant role in tumor-related inflammation toward the metastatic spread and cancer aggressiveness. The pro-inflammatory cytokine interleukin-1β (IL-β) and its cognate receptor IL1R1 contribute to the initiation and progression of breast cancer determining pro-tumorigenic inflammatory responses. The transcriptional target of the hypoxia inducible factor-1α (HIF-1α) namely the G protein estrogen receptor (GPER) mediates a feedforward loop coupling IL-1β induction by breast cancer-associated fibroblasts (CAFs) to IL1R1 expression by breast cancer cells toward the regulation of target genes and relevant biological responses. Methods In order to ascertain the correlation of IL-β with HIF-1α and further hypoxia-related genes in triple-negative breast cancer (TNBC) patients, a bioinformatics analysis was performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets. Gene expression correlation, statistical analysis and gene set enrichment analysis (GSEA) were carried out with R studio packages. Pathway enrichment analysis was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. TNBC cells and primary CAFs were used as model system. The molecular mechanisms implicated in the regulation of IL-1β by hypoxia toward a metastatic gene expression profile and invasive properties were assessed performing gene and protein expression studies, PCR arrays, gene silencing and immunofluorescence analysis, co-immunoprecipitation and ChiP assays, ELISA, cell spreading, invasion and spheroid formation. Results We first determined that IL-1β expression correlates with the levels of HIF-1α as well as with a hypoxia-related gene signature in TNBC patients. Next, we demonstrated that hypoxia triggers a functional liaison among HIF-1α, GPER and the IL-1β/IL1R1 signaling toward a metastatic gene signature and a feed-forward loop of IL-1β that leads to proliferative and invasive responses in TNBC cells. Furthermore, we found that the IL-1β released in the conditioned medium of TNBC cells exposed to hypoxic conditions promotes an invasive phenotype of CAFs. Conclusions Our data shed new light on the role of hypoxia in the activation of the IL-1β/IL1R1 signaling, which in turn triggers aggressive features in both TNBC cells and CAFs. Hence, our findings provide novel evidence regarding the mechanisms through which the hypoxic tumor microenvironment may contribute to breast cancer progression and suggest further targets useful in more comprehensive therapeutic strategies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rita Guzzi
- Department of Physics, University of Calabria, 87036, Rende, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Andrew H Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
19
|
Panza S, Russo U, Giordano F, Leggio A, Barone I, Bonofiglio D, Gelsomino L, Malivindi R, Conforti FL, Naimo GD, Giordano C, Catalano S, Andò S. Leptin and Notch Signaling Cooperate in Sustaining Glioblastoma Multiforme Progression. Biomolecules 2020; 10:biom10060886. [PMID: 32526957 PMCID: PMC7356667 DOI: 10.3390/biom10060886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of glioma, which represents one of the commonly occurring tumors of the central nervous system. Despite the continuous development of new clinical therapies against this malignancy, it still remains a deadly disease with very poor prognosis. Here, we demonstrated the existence of a biologically active interaction between leptin and Notch signaling pathways that sustains GBM development and progression. We found that the expression of leptin and its receptors was significantly higher in human glioblastoma cells, U-87 MG and T98G, than in a normal human glial cell line, SVG p12, and that activation of leptin signaling induced growth and motility in GBM cells. Interestingly, flow cytometry and real-time RT-PCR assays revealed that GBM cells, grown as neurospheres, displayed stem cell-like properties (CD133+) along with an enhanced expression of leptin receptors. Leptin treatment significantly increased the neurosphere forming efficiency, self-renewal capacity, and mRNA expression levels of the stemness markers CD133, Nestin, SOX2, and GFAP. Mechanistically, we evidenced a leptin-mediated upregulation of Notch 1 receptor and the activation of its downstream effectors and target molecules. Leptin-induced effects on U-87 MG and T98G cells were abrogated by the selective leptin antagonist, the peptide LDFI (Leu-Asp-Phe-Ile), as well as by the specific Notch signaling inhibitor, GSI (Gamma Secretase Inhibitor) and in the presence of a dominant-negative of mastermind-like-1. Overall, these findings demonstrate, for the first time, a functional interaction between leptin and Notch signaling in GBM, highlighting leptin/Notch crosstalk as a potential novel therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Umberto Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (S.C.); (S.A.); Tel.: +39-0984-496207 (S.C.); +39-0984-496201 (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (S.C.); (S.A.); Tel.: +39-0984-496207 (S.C.); +39-0984-496201 (S.A.)
| |
Collapse
|
20
|
Cadeddu Dessalvi C, Pepe A, Penna C, Gimelli A, Madonna R, Mele D, Monte I, Novo G, Nugara C, Zito C, Moslehi JJ, de Boer RA, Lyon AR, Tocchetti CG, Mercuro G. Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Fail Rev 2020; 24:915-925. [PMID: 31256318 DOI: 10.1007/s10741-019-09820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthracyclines are the cornerstone for many oncologic treatments, but their cardiotoxicity has been recognized for several decades. Female subjects, especially before puberty and adolescence, or after menopause, seem to be more at increased risk, with the prognostic impact of this sex issue being less consistent compared to other cardiovascular risk factors. Several studies imply that sex differences could depend on the lack of the protective effect of sex hormones against the anthracycline-initiated damage in cardiac cells, or on differential mitochondria-related oxidative gene expression. This is also reflected by the results obtained with different diagnostic methods, such as cardiovascular biomarkers and imaging techniques (echocardiography, magnetic resonance, and nuclear medicine) in the diagnosis and monitoring of cardiotoxicity, confirming that sex differences exist. The same is true about protective strategies from anthracycline cardiotoxicity. Indeed, first studied to withstand oxidative damage in response to ischemia/reperfusion (I/R) injury, cardioprotection has different outcomes in men and women. A number of studies assessed the differences in I/R response between male and female hearts, with oxidative stress and apoptosis being shared mechanisms between the I/R and anthracyclines heart damage. Sex hormones can modulate these mechanisms, thus confirming their importance in the pathophysiology in cardioprotection not only from the ischemia/reperfusion damage, but also from anthracyclines, fueling further cardio-oncologic research on the topic.
Collapse
Affiliation(s)
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Gimelli
- Nuclear Medicine Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Donato Mele
- Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities- Cardiology, University of Catania, Catania, Italy
| | - Giuseppina Novo
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Cinzia Nugara
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine - Cardiology, University of Messina, Messina, Italy
| | - Javid J Moslehi
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | | | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy.
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
21
|
Chan Y, Lai AC, Lin R, Wang Y, Wang Y, Chang W, Wu H, Lin Y, Chang W, Wu J, Yu J, Chen Y, Yu AL. GPER-induced signaling is essential for the survival of breast cancer stem cells. Int J Cancer 2020; 146:1674-1685. [PMID: 31340060 PMCID: PMC7003894 DOI: 10.1002/ijc.32588] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Abstract
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs.
Collapse
Affiliation(s)
- Yu‐Tzu Chan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
| | - Alan C.‐Y. Lai
- Institute of Biochemical Science, College of Life Science, National Taiwan UniversityTaipeiTaiwan
- Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
| | - Ruey‐Jen Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
| | - Ya‐Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
| | - Yi‐Ting Wang
- Institute of Chemistry, Academia SinicaTaipeiTaiwan
| | - Wen‐Wei Chang
- School of Biomedical Sciences and Department of Medical ResearchChung Shan Medical UniversityTaichungTaiwan
| | - Hsin‐Yi Wu
- Instrumentation CenterNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
| | - Wen‐Ying Chang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
| | - Jen‐Chine Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
| | - Jyh‐Cherng Yu
- Department of SurgeryTri‐Service General HospitalTaipeiTaiwan
| | - Yu‐Ju Chen
- Institute of Chemistry, Academia SinicaTaipeiTaiwan
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
- Department of PediatricsUniversity of California in San DiegoSan DiegoCA
- Genomic Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
22
|
Jacenik D, Krajewska WM. Significance of G Protein-Coupled Estrogen Receptor in the Pathophysiology of Irritable Bowel Syndrome, Inflammatory Bowel Diseases and Colorectal Cancer. Front Endocrinol (Lausanne) 2020; 11:390. [PMID: 32595606 PMCID: PMC7303275 DOI: 10.3389/fendo.2020.00390] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The regulatory role of estrogens and nuclear estrogen receptors, i. e., estrogen receptor α and β has been reported in gastrointestinal diseases. However, the contribution of G protein-coupled estrogen receptor, the membrane-bound estrogen receptor, is still poorly understood. Unlike nuclear estrogen receptors, which are responsible for the genomic activity of estrogens, the G protein-coupled estrogen receptor affects the "rapid" non-genomic activity of estrogens, leading to modulation of many signaling pathways and ultimately changing gene expression. Recently, the crucial role of G protein-coupled estrogen receptor in intestinal pathogenesis has been documented. It has been shown that the G protein-coupled estrogen receptor can modulate the progression of irritable bowel syndrome, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis as well as colorectal cancer. The G protein-coupled estrogen receptor appears to be a potent factor regulating abdominal sensitivity and pain, intestinal peristalsis, colitis development, proliferation and migration potential of colorectal cancer cells and seems to be a useful target in gastrointestinal diseases. In this review, we present the current state of knowledge about the contribution of the G protein-coupled estrogen receptor to irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer.
Collapse
|
23
|
Guo J, Fu W, Xiang M, Zhang Y, Zhou K, Xu CR, Li L, Kuang D, Ye F. Notch1 Drives the Formation and Proliferation of Intrahepatic Cholangiocarcinoma. Curr Med Sci 2019; 39:929-937. [PMID: 31845224 DOI: 10.1007/s11596-019-2125-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/02/2019] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms underlying the development of intrahepatic cholangiocarcinoma (ICC) are not clear yet. In this study, we investigated the involvement of Notch1 in the development of ICC. The cDNA microarray analysis showed that Notch1 expression was higher in ICC tissues than in normal biliary epithelial cells. Stable transfection of Notch1 receptor intracellular domain (NICD1) by hydrodynamic tail vein injection induced ICC formation in mice. Western blotting confirmed that Notch1 signaling was activated in human ICC cell lines and mouse ICC tissues. Silencing Notch1 with specific short interfering RNA (siRNA) inhibited the proliferation of ICC cells. Flow cytometry and Western blotting indicated that apoptosis was induced in Notch1-silenced ICC cells compared with controls. Additionally, Notch1 silencing was associated with the inhibition of hairy and enhancer of split-1 (Hes1) and activation of the phosphatase and tensin homolog (PTEN)/p53 pathway. Taken together, these data suggest that Notch1 drives ICC formation and proliferation; downregulation of Notch1 induces apoptosis in ICC cells; Notch1 signaling may serve as a novel therapeutic target for the treatment of ICC.
Collapse
Affiliation(s)
- Jun Guo
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Fu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuan-Rui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Xu S, Yu S, Dong D, Lee LTO. G Protein-Coupled Estrogen Receptor: A Potential Therapeutic Target in Cancer. Front Endocrinol (Lausanne) 2019; 10:725. [PMID: 31708873 PMCID: PMC6823181 DOI: 10.3389/fendo.2019.00725] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER) is a seven-transmembrane-domain receptor that mediates non-genomic estrogen related signaling. After ligand activation, GPER triggers multiple downstream pathways that exert diverse biological effects on the regulation of cell growth, migration and programmed cell death in a variety of tissues. A significant correlation between GPER and the progression of multiple cancers has likewise been reported. Therefore, a better understanding of the role GPER plays in cancer biology may lead to the identification of novel therapeutic targets, especially among estrogen-related cancers. Here, we review cell signaling and detail the functions of GPER in malignancies.
Collapse
Affiliation(s)
- Shen Xu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Faculty of Health Sciences, Centre of Reproduction Development and Aging, University of Macau, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Daming Dong
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leo Tsz On Lee
- Faculty of Health Sciences, Centre of Reproduction Development and Aging, University of Macau, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
25
|
Shen Y, Cao J, Liang Z, Lin Q, Wang J, Yang X, Zhang R, Zong J, Du X, Peng Y, Zhang J, Shi J. Estrogen receptor α-NOTCH1 axis enhances basal stem-like cells and epithelial-mesenchymal transition phenotypes in prostate cancer. Cell Commun Signal 2019; 17:50. [PMID: 31122254 PMCID: PMC6533681 DOI: 10.1186/s12964-019-0367-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Prostate cancer (PCa) is the second leading cause of mortality and a leading cause of malignant tumors in males. Prostate cancer stem cells (PCSCs) are likely the responsible cell types for cancer initiation, clinical treatment failure, tumor relapse, and metastasis. Estrogen receptor alpha (ERα) is mainly expressed in the basal layer cells of the normal prostate gland and has key roles in coordinating stem cells to control prostate organ development. Here, we investigated the roles of the estrogen-ERα signaling pathway in regulating PCSCs. Methods Correlation of CD49f and ERα/NOTCH1 was analyzed in human clinical datasets and tissue samples. Flow cytometry was used to sort CD49fHi and CD49fLow cells. EZH2 recruitment by ERα and facilitation of ERα binding to the NOTCH1 promoter was validated by Co-IP and ChIP. Primary tumor growth, tumor metastasis and sensitivity to 17β-estradiol (E2) inhibitor (tamoxifen) were evaluated in castrated mice. Results ERα expression was significantly higher in CD49fHi prostate cancer basal stem-like cells (PCBSLCs), which showed basal and EMT features with susceptibility to E2 treatment. ERα-induced estrogen effects were suggested to drive the NOTCH1 signaling pathway activity via binding to the NOTCH1 promoter. Moreover, EZH2 was recruited by ERα and acted as a cofactor to assist ERα-induced estrogen effects in regulating NOTCH1 in PCa. In vivo, E2 promoted tumor formation and metastasis, which were inhibited by tamoxifen. Conclusions Our results implicated CD49f+/ERα + prostate cancer cells associated with basal stem-like and EMT features, named EMT-PCBSLCs, in heightened potential for promoting metastasis. NOTCH1 was regulated by E2 in CD49fHi EMT-PCBSLCs. These results contribute to insights into the metastatic mechanisms of EMT-PCBSLCs in PCa. Electronic supplementary material The online version of this article (10.1186/s12964-019-0367-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongmei Shen
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiasong Cao
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhixian Liang
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qimei Lin
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jianxi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xu Yang
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ran Zhang
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiaojiao Zong
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ju Zhang
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Jiandang Shi
- College of Life Sciences and Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Rigiracciolo DC, Santolla MF, Lappano R, Vivacqua A, Cirillo F, Galli GR, Talia M, Muglia L, Pellegrino M, Nohata N, Di Martino MT, Maggiolini M. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:58. [PMID: 30728047 PMCID: PMC6364402 DOI: 10.1186/s13046-019-1056-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. METHODS Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. RESULTS We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. CONCLUSIONS The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.
Collapse
Affiliation(s)
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
27
|
G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Mol Sci 2019; 20:ijms20020306. [PMID: 30646517 PMCID: PMC6359026 DOI: 10.3390/ijms20020306] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled estrogen receptor (GPER), an alternate estrogen receptor (ER) with a structure distinct from the two canonical ERs, being ERα, and ERβ, is expressed in 50% to 60% of breast cancer tissues and has been presumed to be associated with the development of tamoxifen resistance in ERα positive breast cancer. On the other hand, triple-negative breast cancer (TNBC) constitutes 15% to 20% of breast cancers and frequently displays a more aggressive behavior. GPER is prevalent and involved in TNBC and can be a therapeutic target. However, contradictory results exist regarding the function of GPER in breast cancer, proliferative or pro-apoptotic. A better understanding of the GPER, its role in breast cancer, and the interactions with the ER and epidermal growth factor receptor will be beneficial for the disease management and prevention in the future.
Collapse
|
28
|
Mollen EWJ, Ient J, Tjan-Heijnen VCG, Boersma LJ, Miele L, Smidt ML, Vooijs MAGG. Moving Breast Cancer Therapy up a Notch. Front Oncol 2018; 8:518. [PMID: 30515368 PMCID: PMC6256059 DOI: 10.3389/fonc.2018.00518] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the second most common malignancy, worldwide. Treatment decisions are based on tumor stage, histological subtype, and receptor expression and include combinations of surgery, radiotherapy, and systemic treatment. These, together with earlier diagnosis, have resulted in increased survival. However, initial treatment efficacy cannot be guaranteed upfront, and these treatments may come with (long-term) serious adverse effects, negatively affecting a patient's quality of life. Gene expression-based tests can accurately estimate the risk of recurrence in early stage breast cancers. Disease recurrence correlates with treatment resistance, creating a major need to resensitize tumors to treatment. Notch signaling is frequently deregulated in cancer and is involved in treatment resistance. Preclinical research has already identified many combinatory therapeutic options where Notch involvement enhances the effectiveness of radiotherapy, chemotherapy or targeted therapies for breast cancer. However, the benefit of targeting Notch has remained clinically inconclusive. In this review, we summarize the current knowledge on targeting the Notch pathway to enhance current treatments for breast cancer and to combat treatment resistance. Furthermore, we propose mechanisms to further exploit Notch-based therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Erik W J Mollen
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands.,Division of Medical Oncology, Department of Surgery, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Vivianne C G Tjan-Heijnen
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Liesbeth J Boersma
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Marjolein L Smidt
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Medical Oncology, Department of Surgery, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Marc A G G Vooijs
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
29
|
Gelsomino L, Panza S, Giordano C, Barone I, Gu G, Spina E, Catalano S, Fuqua S, Andò S. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett 2018; 428:12-20. [DOI: 10.1016/j.canlet.2018.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
|
30
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|
31
|
Martin SG, Lebot MN, Sukkarn B, Ball G, Green AR, Rakha EA, Ellis IO, Storr SJ. Low expression of G protein-coupled oestrogen receptor 1 (GPER) is associated with adverse survival of breast cancer patients. Oncotarget 2018; 9:25946-25956. [PMID: 29899833 PMCID: PMC5995224 DOI: 10.18632/oncotarget.25408] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/28/2018] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled oestrogen receptor 1 (GPER), also called G protein-coupled receptor 30 (GPR30), is attracting considerable attention for its potential role in breast cancer development and progression. Activation by oestrogen (17β-oestradiol; E2) initiates short term, non-genomic, signalling events both in vitro and in vivo. Published literature on the prognostic value of GPER protein expression in breast cancer indicates that further assessment is warranted. We show, using immunohistochemistry on a large cohort of primary invasive breast cancer patients (n=1245), that low protein expression of GPER is not only significantly associated with clinicopathological and molecular features of aggressive behaviour but also significantly associated with adverse survival of breast cancer patients. Furthermore, assessment of GPER mRNA levels in the METABRIC cohort (n=1980) demonstrates that low GPER mRNA expression is significantly associated with adverse survival of breast cancer patients. Using artificial neural networks, genes associated with GPER mRNA expression were identified; these included notch-4 and jagged-1. These results support the prognostic value for determination of GPER expression in breast cancer.
Collapse
Affiliation(s)
- Stewart G Martin
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Marie N Lebot
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Bhudsaban Sukkarn
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Graham Ball
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG1 4BU, UK
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Sarah J Storr
- Translational and Radiation Biology Research Group, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK.,Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| |
Collapse
|
32
|
Rocca C, Femminò S, Aquila G, Granieri MC, De Francesco EM, Pasqua T, Rigiracciolo DC, Fortini F, Cerra MC, Maggiolini M, Pagliaro P, Rizzo P, Angelone T, Penna C. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts. Front Physiol 2018; 9:521. [PMID: 29867564 PMCID: PMC5962667 DOI: 10.3389/fphys.2018.00521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER) is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR) hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS) and mitochondrial K+-ATP (MitoKATP) channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM) alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM), of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions, including hypertension, reduce the efficacy of ischemic conditioning strategies. However, G1-induced protection can result in significant reduction of I/R injury also female in hypertensive animals. Further studies may ascertain the clinical translation of the present results.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | - Saveria Femminò
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Granieri
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | | | - Teresa Pasqua
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | - Damiano C Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Maria C Cerra
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Tommaso Angelone
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Claudia Penna
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
33
|
Pupo M, Bodmer A, Berto M, Maggiolini M, Dietrich PY, Picard D. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells. Oncotarget 2018; 8:46728-46744. [PMID: 28596490 PMCID: PMC5564519 DOI: 10.18632/oncotarget.18156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023] Open
Abstract
GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer.
Collapse
Affiliation(s)
- Marco Pupo
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.,Current address: Areta International S.r.l., Gerenzano, Italy
| | - Alexandre Bodmer
- Département d'Oncologie, Hôpitaux Universitaires de Genève, CH - 1211 Genève 14, Switzerland
| | - Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pierre-Yves Dietrich
- Département d'Oncologie, Hôpitaux Universitaires de Genève, CH - 1211 Genève 14, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| |
Collapse
|
34
|
Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 2018; 176:49-56. [PMID: 28249728 DOI: 10.1016/j.jsbmb.2017.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The aggressiveness of breast tumors is deeply influenced by the surrounding stroma. In this regard, the functional crosstalk between cancer cells and the tumor microenvironment has received considerable attention in recent years. Cancer-associated fibroblasts (CAFs) are active components of the tumor stroma as they play a main role in the initiation, progression, metastasis and recurrence of breast malignancy. Hence, a better understanding of the mechanisms through which host stroma may contribute to cancer development would lead to novel therapeutic approaches aimed to target both tumor cells and the adjacent microenvironment. The G protein estrogen receptor (GPER/GPR30) has been involved in estrogenic signaling in normal and malignant cells, including breast cancer. It is noteworthy that the potential of GPER to mediate stimulatory effects of estrogens has been also shown in CAFs derived from patients with breast tumors, suggesting that GPER may act at the cross-road between cancer cells and these important components of the tumor microenvironment. This review recapitulates recent findings underlying the breast tumor-promoting action of CAFs, in particular their functional liaison with breast cancer cells via GPER toward the occurrence of malignant features.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
35
|
Liu Q, Chen Z, Jiang G, Zhou Y, Yang X, Huang H, Liu H, Du J, Wang H. Epigenetic down regulation of G protein-coupled estrogen receptor (GPER) functions as a tumor suppressor in colorectal cancer. Mol Cancer 2017; 16:87. [PMID: 28476123 PMCID: PMC5418684 DOI: 10.1186/s12943-017-0654-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
Background Estrogenic signals are suggested to have protection roles in the development of colorectal cancer (CRC). The G protein-coupled estrogen receptor (GPER) has been reported to mediate non-genomic effects of estrogen in hormone related cancers except CRC. Its expression and functions in CRC were investigated. Methods The expression of GPER and its associations with clinicopathological features were examined. The mechanisms were further investigated using cells, mouse xenograft models, and clinical human samples. Results GPER was significantly (p < 0.01) down regulated in CRC tissues compared with their matched adjacent normal tissues in our two cohorts and three independent investigations from Oncomine database. Patients whose tumors expressing less (n = 36) GPER showed significant (p < 0.01) poorer survival rate as compared with those with greater levels of GPER (n = 54). Promoter methylation and histone H3 deacetylation were involved in the down regulation of GPER in CRC cell lines and clinical tissues. Activation of GPER by its specific agonist G-1 inhibited proliferation, induced cell cycle arrest, mitochondrial-related apoptosis and endoplasmic reticulum (ER) stress of CRC cells. The upregulation of reactive oxygen species (ROS) induced sustained ERK1/2 activation participated in G-1 induced cell growth arrest. Further, G-1 can inhibit the phosphorylation, nuclear localization, and transcriptional activities of NF-κB via both canonical IKKα/ IκBα pathways and phosphorylation of GSK-3β. Xenograft model based on HCT-116 cells confirmed that G-1 can suppress the in vivo progression of CRC. Conclusions Epigenetic down regulation of GPER acts as a tumor suppressor in colorectal cancer and its specific activation might be a potential approach for CRC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0654-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Guanmin Jiang
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Key Laboratory of Tropical Disease Control (Ministry of Education), Sun Yat-sen University, Guangzhou, 510655, China
| | - Hongbin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Huanliang Liu
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Key Laboratory of Tropical Disease Control (Ministry of Education), Sun Yat-sen University, Guangzhou, 510655, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget 2016; 7:94-111. [PMID: 26646587 PMCID: PMC4807985 DOI: 10.18632/oncotarget.6475] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022] Open
Abstract
Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.
Collapse
|
37
|
Feldman RD, Limbird LE. GPER (GPR30): A Nongenomic Receptor (GPCR) for Steroid Hormones with Implications for Cardiovascular Disease and Cancer. Annu Rev Pharmacol Toxicol 2016; 57:567-584. [PMID: 27814026 DOI: 10.1146/annurev-pharmtox-010716-104651] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6;
| | - Lee E Limbird
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208
| |
Collapse
|
38
|
Kulkoyluoglu E, Madak-Erdogan Z. Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids 2016; 114:41-47. [PMID: 27394959 DOI: 10.1016/j.steroids.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
Estrogens regulate function of reproductive and non-reproductive tissues in healthy and diseased states including breast cancer. They mainly work through estrogen receptor alpha (ERα) and/or estrogen receptor beta (ERβ). There are various ERα targeting agents that have been used for treatment of ER (+) breast tumors. The impact of direct nuclear activity of ER is very well characterized in ER (+) breast cancers and development and progression of endocrine resistance. Recent studies also suggested important roles for extranuclear-initiated ERα pathways, which would decrease the potency and efficiency of ERα targeting agents. In this mini-review, we will discuss the role of nuclear and extra-nuclear ER signaling and how they relate to therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA.
| |
Collapse
|
39
|
Abstract
Estrogens are important modulators of a broad spectrum of physiological functions in humans. However, despite their beneficial actions, a number of lines of evidence correlate the sustained exposure to exogenous estrogen with increased risk of the onset of various cancers. Mainly these steroid hormones induce their effects by binding and activating estrogen receptors (ERα and ERβ). These receptors belong to the family of ligand-regulated transcription factors, and upon activation they regulate the expression of different target genes by binding directly to specific DNA sequences. On the other hand, in recent years it has become clear that the G protein-coupled estrogen receptor 30 (GPR30/GPER) is able to mediate non-genomic action of estrogens in different cell contexts. In particular, GPER has been shown to specifically bind estrogens, and in turn to functionally cross-react with diverse cell signaling systems such as the epidermal growth factor receptor (EGFR) pathway, the Notch signaling pathway and the mitogen-activated protein kinases (MAPK) pathway. In this chapter we will present some of the different experimental techniques currently used to demonstrate the functional role of GPER in mediating non-genomic actions of estrogens, such as the dual luciferase assay, assessment of the involvement of GPER in the stimulation of cell migration in breast cancer cell lines and in cancer-associated fibroblasts, and chromatin immunoprecipitation assay. Overall, the experimental procedures described herein represent key instruments for assessing the biological role of GPER in mediating non-genomic signals of estrogen.
Collapse
Affiliation(s)
- Marco Pupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna Maria Musti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
- Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
40
|
Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci 2016; 17:ijms17081357. [PMID: 27548161 PMCID: PMC5000752 DOI: 10.3390/ijms17081357] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.
Collapse
|
41
|
Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, De Marco P, Cirillo F, Cappello AR, Dolce V, Belfiore A, Maggiolini M, De Francesco EM. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget 2016; 6:34158-77. [PMID: 26415222 PMCID: PMC4741443 DOI: 10.18632/oncotarget.5779] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023] Open
Abstract
Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.
Collapse
Affiliation(s)
| | - Andrea Scarpelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Assunta Pisano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | |
Collapse
|
42
|
Luo H, Liu M, Luo S, Yu T, Wu C, Yang G, Tu G. Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: An alternative role of estrogen in mammary carcinoma development. Steroids 2016; 112:1-11. [PMID: 27016131 DOI: 10.1016/j.steroids.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs.
Collapse
Affiliation(s)
- Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shujuan Luo
- Department of Gynecology and Obstetrics, Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Tenghua Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chengyi Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Jacenik D, Cygankiewicz AI, Krajewska WM. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation. Mol Cell Endocrinol 2016; 429:10-8. [PMID: 27107933 DOI: 10.1016/j.mce.2016.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Adam I Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
44
|
Lappano R, Rosano C, Pisano A, Santolla MF, De Francesco EM, De Marco P, Dolce V, Ponassi M, Felli L, Cafeo G, Kohnke FH, Abonante S, Maggiolini M. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models. Dis Model Mech 2015; 8:1237-46. [PMID: 26183213 PMCID: PMC4610237 DOI: 10.1242/dmm.021071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Camillo Rosano
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Assunta Pisano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | | | - Paola De Marco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Vincenza Dolce
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Marco Ponassi
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Lamberto Felli
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Grazia Cafeo
- Department of Chemical Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Marcello Maggiolini
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| |
Collapse
|
45
|
Kamdje AHN, Etet PFS, Vecchio L, Tagne RS, Amvene JM, Muller JM, Krampera M, Lukong KE. New targeted therapies for breast cancer: A focus on tumor microenvironmental signals and chemoresistant breast cancers. World J Clin Cases 2014; 2:769-786. [PMID: 25516852 PMCID: PMC4266825 DOI: 10.12998/wjcc.v2.i12.769] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/12/2014] [Accepted: 09/23/2014] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most frequent female malignancy worldwide. Current strategies in breast cancer therapy, including classical chemotherapy, hormone therapy, and targeted therapies, are usually associated with chemoresistance and serious adverse effects. Advances in our understanding of changes affecting the interactome in advanced and chemoresistant breast tumors have provided novel therapeutic targets, including, cyclin dependent kinases, mammalian target of rapamycin, Notch, Wnt and Shh. Inhibitors of these molecules recently entered clinical trials in mono- and combination therapy in metastatic and chemo-resistant breast cancers. Anticancer epigenetic drugs, mainly histone deacetylase inhibitors and DNA methyltransferase inhibitors, also entered clinical trials. Because of the complexity and heterogeneity of breast cancer, the future in therapy lies in the application of individualized tailored regimens. Emerging therapeutic targets and the implications for personalized-based therapy development in breast cancer are herein discussed.
Collapse
|
46
|
Wei W, Chen ZJ, Zhang KS, Yang XL, Wu YM, Chen XH, Huang HB, Liu HL, Cai SH, Du J, Wang HS. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis 2014; 5:e1428. [PMID: 25275589 PMCID: PMC4649509 DOI: 10.1038/cddis.2014.398] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/20/2023]
Abstract
There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER−) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER− breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER− breast cancer cells in vitro. Treatment of ER− breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER− breast cancer treatment.
Collapse
Affiliation(s)
- W Wei
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Z-J Chen
- Department of Pharmacy, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - K-S Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - X-L Yang
- Key Laboratory of Tropical Disease Control (Ministry of Education), Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510655, China
| | - Y-M Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - X-H Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - H-B Huang
- Department of Pharmacy, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - H-L Liu
- Key Laboratory of Tropical Disease Control (Ministry of Education), Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510655, China
| | - S-H Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China
| | - J Du
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - H-S Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
47
|
Marjon NA, Hu C, Hathaway HJ, Prossnitz ER. G protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol Cancer Res 2014; 12:1644-1654. [PMID: 25030371 DOI: 10.1158/1541-7786.mcr-14-0128-t] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED The role of 17β-estradiol (E2) in breast cancer development and tumor growth has traditionally been attributed exclusively to the activation of estrogen receptor-α (ERα). Although targeted inhibition of ERα is a successful approach for patients with ERα(+) breast cancer, many patients fail to respond or become resistant to anti-estrogen therapy. The discovery of the G protein-coupled estrogen receptor (GPER) suggested an additional mechanism through which E2 could exert its effects in breast cancer. Studies have demonstrated clinical correlations between GPER expression in human breast tumor specimens and increased tumor size, distant metastasis, and recurrence, as well as established a proliferative role for GPER in vitro; however, direct in vivo evidence has been lacking. To this end, a GPER-null mutation [GPER knockout (KO)] was introduced, through interbreeding, into a widely used transgenic mouse model of mammary tumorigenesis [MMTV-PyMT (PyMT)]. Early tumor development, assessed by the extent of hyperplasia and proliferation, was not different between GPER wild-type/PyMT (WT/PyMT) and those mice harboring the GPER-null mutation (KO/PyMT). However, by 12 to 13 weeks of age, tumors from KO/PyMT mice were smaller with decreased proliferation compared with those from WT/PyMT mice. Furthermore, tumors from the KO/PyMT mice were of histologically lower grade compared with tumors from their WT counterparts, suggesting less aggressive tumors in the KO/PyMT mice. Finally, KO/PyMT mice displayed dramatically fewer lung metastases compared with WT/PyMT mice. Combined, these data provide the first in vivo evidence that GPER plays a critical role in breast tumor growth and distant metastasis. IMPLICATIONS This is the first description of a role for the novel estrogen receptor GPER in breast tumorigenesis and metastasis, demonstrating that it represents a new target in breast cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Nicole A Marjon
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Chelin Hu
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Eric R Prossnitz
- Department of Cell Biology & Physiology, and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
48
|
Lappano R, Pisano A, Maggiolini M. GPER Function in Breast Cancer: An Overview. Front Endocrinol (Lausanne) 2014; 5:66. [PMID: 24834064 PMCID: PMC4018520 DOI: 10.3389/fendo.2014.00066] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
The G-protein-coupled estrogen receptor-1 (GPER, formerly known as GPR30) has attracted increasing interest, considering its ability to mediate estrogenic signaling in different cell types, including the hormone-sensitive tumors like breast cancer. As observed for other GPCR-mediated responses, the activation of the epidermal growth factor receptor is a fundamental integration point in the biological action triggered by GPER. A wide number of natural and synthetic compounds, including estrogens and anti-estrogens, elicit stimulatory effects in breast cancer through GPER up-regulation and activation, suggesting that GPER function is associated with breast tumor progression and tamoxifen resistance. GPER has also been proposed as a candidate biomarker in triple-negative breast cancer, opening a novel scenario for a more comprehensive assessment of breast tumor patients.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- *Correspondence: Rosamaria Lappano, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy e-mail:
| | - Assunta Pisano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|