1
|
Bani N, Rahmani F, Shakour N, Amerizadeh F, Khalili-Tanha G, Khazaei M, Hassanian SM, Kerachian MA, Abbaszadegan MR, Mojarad M, Hadizadeh F, Ferns GA, Avan A. Wortmannin Inhibits Cell Growth and Induces Apoptosis in Colorectal Cancer Cells by Suppressing the PI3K/AKT Pathway. Anticancer Agents Med Chem 2024; 24:916-927. [PMID: 38584531 DOI: 10.2174/0118715206296355240325113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant contributor to mortality, often exacerbated by metastasis and chemoresistance. Novel therapeutic strategies are imperative to enhance current treatments. The dysregulation of the PI3K/Akt signaling pathway is implicated in CRC progression. This study investigates the therapeutic potential of Wortmannin, combined with 5-fluorouracil (5-FU), to target the PI3K/Akt pathway in CRC. METHODS Anti-migratory and antiproliferative effects were assessed through wound healing and MTT assays. Apoptosis and cell cycle alterations were evaluated using Annexin V/Propidium Iodide Apoptosis Assay. Wortmannin's impact on the oxidant/antioxidant equilibrium was examined via ROS, SOD, CAT, MDA, and T-SH levels. Downstream target genes of the PI3K/AKT pathway were analyzed at mRNA and protein levels using RTPCR and western blot, respectively. RESULTS Wortmannin demonstrated a significant inhibitory effect on cell proliferation, modulating survivin, cyclinD1, PI3K, and p-Akt. The PI3K inhibitor attenuated migratory activity, inducing E-cadherin expression. Combined Wortmannin with 5-FU induced apoptosis, increasing cells in sub-G1 via elevated ROS levels. CONCLUSION This study underscores Wortmannin's potential in inhibiting CRC cell growth and migration through PI3K/Akt pathway modulation. It also highlights its candidacy for further investigation as a promising therapeutic option in colorectal cancer treatment.
Collapse
Affiliation(s)
- Nastaran Bani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Forouzan Amerizadeh
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Macieja A, Gulbas I, Popławski T. DNA Double-Strand Break Repair Inhibitors: YU238259, A12B4C3 and DDRI-18 Overcome the Cisplatin Resistance in Human Ovarian Cancer Cells, but Not under Hypoxia Conditions. Curr Issues Mol Biol 2023; 45:7915-7932. [PMID: 37886943 PMCID: PMC10605129 DOI: 10.3390/cimb45100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Cisplatin (CDDP) is the cornerstone of standard treatment for ovarian cancer. However, the resistance of ovarian cancer cells to CDDP leads to an inevitable recurrence. One of the strategies to overcome resistance to CDDP is the combined treatment of ovarian cancer with CDDP and etoposide (VP-16), although this strategy is not always effective. This article presents a new approach to sensitize CDDP-resistant human ovarian carcinoma cells to combined treatment with CDDP and VP-16. To replicate the tumor conditions of cancers, we performed analysis under hypoxia conditions. Since CDDP and VP-16 induce DNA double-strand breaks (DSB), we introduce DSB repair inhibitors to the treatment scheme. We used novel HRR and NHEJ inhibitors: YU238259 inhibits the HRR pathway, and DDRI-18 and A12B4C3 act as NHEJ inhibitors. All inhibitors enhanced the therapeutic effect of the CDDP/VP-16 treatment scheme and allowed a decrease in the effective dose of CDDP/VP16. Inhibition of HRR or NHEJ decreased survival and increased DNA damage level, increased the amount of γ-H2AX foci, and caused an increase in apoptotic fraction after treatment with CDDP/VP16. Furthermore, delayed repair of DSBs was detected in HRR- or NHEJ-inhibited cells. This favorable outcome was altered under hypoxia, during which alternation at the transcriptome level of the transcriptome in cells cultured under hypoxia compared to aerobic conditions. These changes suggest that it is likely that other than classical DSB repair systems are activated in cancer cells during hypoxia. Our study suggests that the introduction of DSB inhibitors may improve the effectiveness of commonly used ovarian cancer treatment, and HRR, as well as NHEJ, is an attractive therapeutic target for overcoming the resistance to CDDP resistance of ovarian cancer cells. However, a hypoxia-mediated decrease in response to our scheme of treatment was observed.
Collapse
Affiliation(s)
- Anna Macieja
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| | - Izabela Gulbas
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Tomasz Popławski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| |
Collapse
|
3
|
Subtil FSB, Gröbner C, Recknagel N, Parplys AC, Kohl S, Arenz A, Eberle F, Dikomey E, Engenhart-Cabillic R, Schötz U. Dual PI3K/mTOR Inhibitor NVP-BEZ235 Leads to a Synergistic Enhancement of Cisplatin and Radiation in Both HPV-Negative and -Positive HNSCC Cell Lines. Cancers (Basel) 2022; 14:cancers14133160. [PMID: 35804930 PMCID: PMC9265133 DOI: 10.3390/cancers14133160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Head and neck cancers (HNSCCs), especially in the advanced stages, are predominantly treated by radiochemotherapy, including cisplatin. The cure rates are clearly higher for HPV-positive HNSCCs when compared to HPV-negative HNSCCs. For both entities, this treatment is accompanied by serious adverse reactions, mainly due to cisplatin administration. We reported earlier that for both HPV-positive and negative HNSCC cells, the effect of radiotherapy was strongly enhanced when pretreated using the dual PI3K/mTOR inhibitor NVP-BEZ235 (BEZ235). The current study shows that for HPV-positive cells, BEZ235 will strongly enhance the effect of cisplatin alone. More important, preincubation with BEZ235 was found to alter the purely additive effect normally seen when cisplatin is combined with radiation into a strong synergistic enhancement. This tri-modal combination might allow for the enhancement of the effect of radiochemotherapy, even with reduced cisplatin. Abstract The standard of care for advanced head and neck cancers (HNSCCs) is radiochemotherapy, including cisplatin. This treatment results in a cure rate of approximately 85% for oropharyngeal HPV-positive HNSCCs, in contrast to only 50% for HPV-negative HNSCCs, and is accompanied by severe side effects for both entities. Therefore, innovative treatment modalities are required, resulting in a better outcome for HPV-negative HNSCCs, and lowering the adverse effects for both entities. The effect of the dual PI3K/mTOR inhibitor NVP-BEZ235 on a combined treatment with cisplatin and radiation was studied in six HPV-negative and six HPV-positive HNSCC cell lines. Cisplatin alone was slightly more effective in HPV-positive cells. This could be attributed to a defect in homologous recombination, as demonstrated by depleting RAD51. Solely for HPV-positive cells, pretreatment with BEZ235 resulted in enhanced cisplatin sensitivity. For the combination of cisplatin and radiation, additive effects were observed. However, when pretreated with BEZ235, this combination changed into a synergistic interaction, with a slightly stronger enhancement for HPV-positive cells. This increase could be attributed to a diminished degree of DSB repair in G1, as visualized via the detection of γH2AX/53BP1 foci. BEZ235 can be used to enhance the effect of combined treatment with cisplatin and radiation in both HPV-negative and -positive HNSCCs.
Collapse
Affiliation(s)
- Florentine S. B. Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Carolin Gröbner
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Niklas Recknagel
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ann Christin Parplys
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Sibylla Kohl
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
- Correspondence: ; Tel.: +49-6421-28-21978
| |
Collapse
|
4
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Ma QL, Shen MO, Han N, Xu HZ, Peng XC, Li QR, Yu TT, Li LG, Xu X, Liu B, Chen X, Wang MF, Li TF. Chlorin e6 mediated photodynamic therapy triggers resistance through ATM-related DNA damage response in lung cancer cells. Photodiagnosis Photodyn Ther 2021; 37:102645. [PMID: 34823034 DOI: 10.1016/j.pdpdt.2021.102645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Photodynamic therapy (PDT) has emerged as a promising strategy in the treatment of malignant tumors due to its high selectivity, non-toxicity, and non-invasiveness. However, PDT can also induce DNA damage and subsequent repair response, which may reduce the efficacy of PDT. In the present study, we sought to explore the effect of chlorin e6 (Ce6)-mediated PDT on DNA damage and DNA damage response (DDR) in lung cancer cells. In addition, the effect of PDT combined with ATM inhibitor on molecules of DDR and the possibility of improving the efficacy of PDT were further investigated. MATERIALS AND METHODS In the in vitro study, lewis cells were submitted to Ce6 treatment (2, 4, 8, 16, 32 μg/mL). To determine the concentration of Ce6, uptake and toxicity of Ce6 mediated PDT were detected using flow cytometry (FACS), Confocal microscopy, and CCK-8. In the subsequent research, 8 μg/mL of Ce6 was the treatment condition for inducing PDT. The different post-irradiation placement times were further grouped under this condition (2, 4, 6, 12 h). Cellular reactive oxygen species (ROS), damage of DNA were measured by DCFH-DA probe, comet assay respectively. Then the expression of p-ATM, p53, and γ-H2A.X proteins related to DNA damage response, was detected by WB. The efficacy of Ce6 induced PDT was also demonstrated by Annexin-V/PI staining as well as the expression of PCNA, cleaved-caspase-3. On this basis, ATM inhibitor was applied to treat lewis cells combined with Ce6 (2, 4 h) to investigate whether the efficacy of PDT induced by Ce6 can be improved after the ATM-related DDR was blocked. The cell viability, apoptosis, and expression of associated proteins were assayed. RESULTS At 2-4 h after PDT treatment, ROS was dramatically elevated in lewis cells, DNA double-strand breaks (DDSB) occurred, as well as up-regulation of DDR proteins γ-H2A.X, p-ATM, and p53. At the same time, lewis cells did not undergo significant apoptosis. After ATM inhibition, the DDR was significantly blocked within 2-4 hours after Ce6 induced PDT, along with a pronounced decrease in cell viability followed by a prominent increase of apoptosis. CONCLUSION Ce6-mediated PDT generates ROS in a short period time, thus inducing DNA damage, ATM-related DDR as well as promoting resistance of lung cancer cells to PDT. Combining ATM inhibitor with PDT could effectively inhibit the DDR induced by PDT, thereby enhancing the efficacy. This study reveals a new resistance mechanism of PDT and proposes an intervention strategy.
Collapse
Affiliation(s)
- Qian-Li Ma
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Mai-Ou Shen
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xing-Chun Peng
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ting-Ting Yu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Bin Liu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Tong-Fei Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
6
|
Huang C, Filippone NR, Reiner T, Roberts S. Sensors and Inhibitors for the Detection of Ataxia Telangiectasia Mutated (ATM) Protein Kinase. Mol Pharm 2021; 18:2470-2481. [PMID: 34125542 DOI: 10.1021/acs.molpharmaceut.1c00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recruitment and activation of the ataxia telangiectasia mutated (ATM) kinase regulate multiple cell-cycle checkpoints relevant to complex biological events like DNA damage repair and apoptosis. Molecularly specific readouts of ATM using protein assays, fluorescence, or radiolabeling have advanced significantly over the past few years. This Review covers the molecular imaging techniques that enable the visualization of ATM-from traditional quantitative protein assays to the potential use of ATM inhibitors to generate new imaging agents to interrogate ATM. We are confident that molecular imaging coupled with advanced technologies will play a pivotal role in visualizing and understanding the biology of ATM and accelerate its applications in the diagnosis and monitoring of disease, including radiation therapy and patient stratification.
Collapse
Affiliation(s)
- Cien Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,City University of New York Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Nina R Filippone
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,State University of New York Binghamton University, 4400 Vestal Parkway, East Binghamton, New York 13902, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
7
|
Kopa P, Macieja A, Pastwa E, Majsterek I, Poplawski T. DNA double-strand breaks repair inhibitors potentiates the combined effect of VP-16 and CDDP in human colorectal adenocarcinoma (LoVo) cells. Mol Biol Rep 2021; 48:709-720. [PMID: 33389482 DOI: 10.1007/s11033-020-06124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
I. BACKGROUND A combination of etoposide (VP-16) and cisplatin (CDDP) is the standard treatment for certain colon cancers. These drugs promote the death of cancer cells via direct and indirect induction of the most lethal DNA lesions - DNA double-stand breaks. However, cancer cells can reverse the DNA damaging effect of anticancer drugs by triggering DNA repair processes. In eukaryotic cells, the main DNA repair pathway responsible for DNA double-stand breaks repair is non-homologous end-joining (NHEJ). Inhibitors of DNA repair are of special interest in cancer research as they could break the cellular resistance to DNA-damaging agents and increase the efficiency of standard cancer treatments. In this study, we investigated the effect of two NHEJ inhibitors, SCR7 and NU7441, on the cytotoxic mechanism of VP-16/CDDP in a LoVo human colorectal adenocarcinoma cell line. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding, whereas NU7441 is a highly potent and selective DNA-PK inhibitor.II. METHODS AND RESULTS Both inhibitors synergistically increased the cytotoxicity of CDDP and VP-16 when combined, but the effect of SCR7 was more pronounced. SCR7 and NU7441 also significantly increased VP-16; CDDP induced DNA double-stand breaks level and delayed drug-induced DSB repair, as seen on the comet assay and measured using H2AX foci. We also observed changes in cell cycle distribution and enhanced apoptosis ratio in colorectal adenocarcinoma cells treated with DNA repair inhibitors and VP-16/CDDP.III. CONCLUSIONS Our data support the hypothesis that NHEJ inhibitors could be used in conjunction with standard therapy to provide effective clinical improvement and allow reduction in drug doses.
Collapse
Affiliation(s)
- Paulina Kopa
- Faculty of Medicine, Department of Immunopathology, Division of Biomedical Science, Medical University of Lodz, Lodz, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Elzbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Upregulation of Akt/Raptor signaling is associated with rapamycin resistance of breast cancer cells. Chem Biol Interact 2020; 330:109243. [PMID: 32861747 DOI: 10.1016/j.cbi.2020.109243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023]
Abstract
mTOR inhibitors are considered today to be one of the most promising anticancer drugs. Here to study the mechanism of the acquired resistance of MCF-7 breast cancer cells to mTOR inhibitors two different models of the cell resistance were used: rapamycin-resistant MCF-7/Rap subline developed under long-term rapamycin treatment, and metformin-resistant MCF-7/M subline obtained by long-term metformin treatment. We have found that both resistant sublines were characterized by common features: increased expression of mTOR-interacting Raptor protein, increased phosphorylation of Akt, and activation of growth-related transcriptional factor AP-1. Cell response to mTOR inhibitors was partially restored under treatment with PI3K inhibitor wortmannin supporting the direct connection between Akt activation and poor cell response to therapeutic drugs. Transfection of mir-181c, one of the positive regulators of Akt and mTOR, led to an increase in the cell resistance to both mTOR inhibitors, rapamycin and metformin, which correlated with Raptor overexpression and activation of Akt/AP-1 signaling. In general, the effect of Raptor overexpression in the resistant cells, as well as the ability of mir-181c to modulate the Raptor expression, can open novel perspectives in the treatment of rapalogues-resistant cancers, based on the drugs design targeting mir-181c/Raptor axis.
Collapse
|
9
|
Safonova EA, Lopatina KA, Razina TG, Zueva EP, Sadrikina LA, Gur'ev AM, Belousov MV. Correction of Damaging Effects of Cisplatin-Containing Polychemotherapy on the Intestinal Epithelium with Tussilago farfara L. Polysaccharides. Bull Exp Biol Med 2019; 167:616-620. [PMID: 31606804 DOI: 10.1007/s10517-019-04582-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 10/25/2022]
Abstract
A possibility for correction of damaging effects of polychemotherapy on the intestinal epithelium with Tussilago farfara L. polysaccharides was studied on C57Bl/6 mice with Lewis lung carcinoma. The polysaccharides had protective and/or stimulating effects on the intestinal epithelium during polychemotherapy and promoted reparative regeneration in the intestine.
Collapse
Affiliation(s)
- E A Safonova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia.
| | - K A Lopatina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - T G Razina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E P Zueva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - L A Sadrikina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - A M Gur'ev
- Siberian State Medical University, Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| | - M V Belousov
- Siberian State Medical University, Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| |
Collapse
|
10
|
Kopa P, Macieja A, Galita G, Witczak ZJ, Poplawski T. DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics. Curr Med Chem 2019; 26:1483-1493. [PMID: 29446719 DOI: 10.2174/0929867325666180214113154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks are considered one of the most lethal forms of DNA damage. Many effective anticancer therapeutic approaches used chemical and physical methods to generate DNA double-strand breaks in the cancer cells. They include: IR and drugs which mimetic its action, topoisomerase poisons, some alkylating agents or drugs which affected DNA replication process. On the other hand, cancer cells are mostly characterized by highly effective systems of DNA damage repair. There are two main DNA repair pathways used to fix double-strand breaks: NHEJ and HRR. Their activity leads to a decreased effect of chemotherapy. Targeting directly or indirectly the DNA double-strand breaks response by inhibitors seems to be an exciting option for anticancer therapy and is a part of novel trends that arise after the clinical success of PARP inhibitors. These trends will provide great opportunities for the development of DNA repair inhibitors as new potential anticancer drugs. The main objective of this article is to address these new promising advances.
Collapse
Affiliation(s)
- Paulina Kopa
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz 90-752, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Zbigniew J Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, United States
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| |
Collapse
|
11
|
Macieja A, Kopa P, Galita G, Pastwa E, Majsterek I, Poplawski T. Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol Biol Rep 2019; 46:3625-3636. [PMID: 31020489 DOI: 10.1007/s11033-019-04605-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
Topoisomerase II (Topo2) inhibitors in combination with cisplatin represent a common treatment modality used for glioma patients. The main mechanism of their action involves induction of DNA double-strand breaks (DSBs). DSBs are repaired via the homology-dependent DNA repair (HRR) and non-homologous end-joining (NHEJ). Inhibition of the NHEJ or HRR pathway sensitizes cancer cells to the treatment. In this work, we investigated the effect of three Topo2 inhibitors-etoposide, NK314, or HU-331 in combination with cisplatin in the U-87 human glioblastoma cell line. Etoposide as well as NK314 inhibited Topo2 activity by stabilizing Topo2-DNA cleavable complexes whereas HU-331 inhibited the ATPase activity of Topo2 using a noncompetitive mechanism. To increase the effectiveness of the treatment, we combined cisplatin and Topo2 inhibitor treatment with DSB repair inhibitors (DRIs). The cells were sensitized with NHEJ inhibitor, NU7441, or the novel HRR inhibitor, YU238259, prior to drug treatment. All of the investigated Topo2 inhibitors in combination with cisplatin efficiently killed the U-87 cells. The most cytotoxic effect was observed for the cisplatin + HU331 treatment scheme and this effect was significantly increased when a DRI pretreatment was used; however, we did not observed DSBs. Therefore, the molecular mechanism of cytotoxicity caused by the cisplatin + HU331 treatment scheme is yet to be evaluated. We observed a concentration-dependent change in DSB levels and accumulation at the G2/M checkpoint and S-phase in glioma cells incubated with NK314/cisplatin and etoposide/cisplatin. In conclusion, in combination with cisplatin, HU331 is the most potent Topo2 inhibitor of human glioblastoma cells.
Collapse
Affiliation(s)
- Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
| | - Paulina Kopa
- Department of Immunopathology, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Elżbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, 633, Napoleon Street, Johnstown, PA, 15901, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Hallera 1, Lodz, 90-647, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
12
|
SET protein accumulation prevents cell death in head and neck squamous cell carcinoma through regulation of redox state and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:623-637. [DOI: 10.1016/j.bbamcr.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022]
|
13
|
Novel quinazolin-4-one derivatives as potentiating agents of doxorubicin cytotoxicity. Bioorg Chem 2019; 82:204-210. [DOI: 10.1016/j.bioorg.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
14
|
Synergistic effect of a novel autophagy inhibitor and Quizartinib enhances cancer cell death. Cell Death Dis 2018; 9:138. [PMID: 29374185 PMCID: PMC5833862 DOI: 10.1038/s41419-017-0170-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Drug combinations have been increasingly applied in chemotherapy as a strategy to enhance the efficacy of anti-cancer treatment. The appropriate drug combinations may achieve synergistic effects beyond monotherapies alone. AC220 (Quizartinib), an FLT3 receptor tyrosine kinase inhibitor, developed for the treatment of AML, has been tested in phase II human clinical trials. However, AC220 as a monotherapy is not efficacious enough. In this study, we performed a small-molecule screening of 12 640 compounds in order to find a compound that increase the AC220 efficacy in chemotherapy. We identified that TAK-165, a HER2 inhibitor, even when used at low nanomolar doses in combination with AC220, was able to induce cell death in different cancer cells, but not in non-cancer cell lines. We showed that TAK-165 and AC220 act synergistically to downregulate key signaling pathways and potently induce cancer cell death. Furthermore, we demonstrated that TAK-165 inhibited autophagy in a HER2-independent manner. Finally, we showed that the combination of TAK-165 and AC220 induced cell death in cancer cells through the activation of chaperone-mediated autophagy. Overall, these findings support the strategy for using AC220 and an autophagy inhibitor such as TAK-165 in a combinatorial treatment to enhance the efficacy of cancer therapies.
Collapse
|
15
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
16
|
Jain A, Jahagirdar D, Nilendu P, Sharma NK. Molecular approaches to potentiate cisplatin responsiveness in carcinoma therapeutics. Expert Rev Anticancer Ther 2017; 17:815-825. [PMID: 28705091 DOI: 10.1080/14737140.2017.1356231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cisplatin has been considered as the crucial regimen of widely prescribed chemotherapy treatment for cancer. The advancing treatment of cancers has reached the border line, where tumors show resistance to cisplatin and may thwart its use. Other than issues of drug resistance, cisplatin has been reported to evince side effects such as nephrotoxicity and ototoxicity. Therefore, there is a compelling need to untangle the problems associated with cisplatin treatment in carcinoma. Areas covered: In this review, we summarize the current status of combinatorial options to bring about better pre-clinical and clinical cisplatin drug responses in carcinoma. We begin with problems associated with cisplatin drugs and current avenues such as depicting molecular modulation of enhanced influx and reduced efflux. We also discuss the scope of the DNA damage response landscape and contribution of regulatory small RNAs towards potentiation of cisplatin responses. Expert commentary: The extensive use of cisplatin and incessant high drug dose have prompted the scientific community to limit the burden of cisplatin without compromising therapeutic success. Currently, there are reports on the potential use of other non-toxic small molecule inhibitors, interference RNAs and peptide mimetics to get rid of cellular adversities responsible for cisplatin resistance and high dose effects.
Collapse
Affiliation(s)
- Aayushi Jain
- a Cancer and Translational Research Lab , Dr. D.Y. Patil Biotechnology & Bioinformatics Institute , Pune , India
| | - Devashree Jahagirdar
- a Cancer and Translational Research Lab , Dr. D.Y. Patil Biotechnology & Bioinformatics Institute , Pune , India
| | - Pritish Nilendu
- a Cancer and Translational Research Lab , Dr. D.Y. Patil Biotechnology & Bioinformatics Institute , Pune , India
| | - Nilesh Kumar Sharma
- a Cancer and Translational Research Lab , Dr. D.Y. Patil Biotechnology & Bioinformatics Institute , Pune , India
| |
Collapse
|
17
|
de Paula LB, Primo FL, Tedesco AC. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev 2017; 9:761-773. [PMID: 28823025 DOI: 10.1007/s12551-017-0293-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most recurrent and malignant astrocytic glioma found in adults. Biologically, GBMs are highly aggressive tumors that often show diffuse infiltration of the brain parenchyma, making complete surgical resection difficult. GBM is not curable with surgery alone because tumor cells typically invade the surrounding brain, rendering complete resection unsafe. Consequently, present-day therapy for malignant glioma remains a great challenge. The location of the invasive tumor cells presents several barriers to therapeutic delivery. The blood-brain barrier regulates the trafficking of molecules to and from the brain. While high-grade brain tumors contain some "leakiness" in their neovasculature, the mechanisms of GBM onset and progression remain largely unknown. Recent advances in the understanding of the signaling pathways that underlie GBM pathogenesis have led to the development of new therapeutic approaches targeting multiple oncogenic signaling aberrations associated with the GBM. Among these, drug delivery nanosystems have been produced to target therapeutic agents and improve their biodistribution and therapeutic index in the tumor. These systems mainly include polymer or lipid-based carriers such as liposomes, metal nanoparticles, polymeric nanospheres and nanocapsules, micelles, dendrimers, nanocrystals, and nanogold. Photodynamic therapy (PDT) is a promising treatment for a variety of oncological diseases. PDT is an efficient, simple, and versatile method that is based on a combination of a photosensitive drug and light (generally laser-diode or laser); these factors are separately relatively harmless but when used together in the presence of oxygen molecules, free radicals are produced that initiate a sequence of biological events, including phototoxicity, vascular damage, and immune responses. Photodynamic pathways activate a cascade of activities, including apoptotic and necrotic cell death in both the tumor and the neovasculature, leading to a permanent lesion and destruction of GBM cells that remain in the healthy tissue. Glioblastoma tumors differ at the molecular level. For example, gene amplification epidermal growth factor receptor and its receptor are more highly expressed in primary GBM than in secondary GBM. Despite these distinguishing features, both types of tumors (primary and secondary) arise as a result dysregulation of numerous intracellular signaling pathways and have standard features, such as increased cell proliferation, survival and resistance to apoptosis, and loss of adhesion and migration, and may show a high degree of invasiveness. PDT may promote significant tumor regression and extend the lifetime of patients who experience glioma progression.
Collapse
Affiliation(s)
- Leonardo B de Paula
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Fernando L Primo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14801-903, São Paulo, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, 14040-901, São Paulo, Brazil.
| |
Collapse
|
18
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
19
|
Durisova K, Salovska B, Pejchal J, Tichy A. Chemical inhibition of DNA repair kinases as a promising tool in oncology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:11-9. [DOI: 10.5507/bp.2015.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/10/2015] [Indexed: 11/23/2022] Open
|
20
|
Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res 2016; 105:164-75. [PMID: 26826398 DOI: 10.1016/j.phrs.2016.01.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved cellular degradative process in which intracellular components (cellular proteins and organelles) are engulfed in autophagosomes which then fuse with lysosomes to form autolysosome for degradation. Autophagy is closely implicated in various physio-pathological processes and human diseases. Among them, the roles of autophagy in cancer have been extensively studied. Increasing evidence has demonstrated that inhibiting autophagy is a novel and promising approach in cancer therapy, based on the notion that autophagy is a pro-survival mechanism in cancer cells under therapeutic stress, and induction of autophagy is associated with chemoresistance of cancer cells to chemotherapeutic agents. Thus, suppression of autophagy would sensitize resistance tumor cells to cancer therapeutic agents, thereby supporting the clinical application of autophagy inhibitors. In recent years, significant progress has been achieved in developing autophagy inhibitors and testing their therapeutical potential, either as standalone or as adjuvant therapeutic agents, in cell and animal models, and more importantly in clinical trials. In this review, we will discuss some of these recent advances in development of novel small molecules autophagy inhibitors and their mechanisms of action, together with their applications in clinical trials.
Collapse
|
21
|
The effect of benzyl isothiocyanate and its computer-aided design derivants targeting alkylglycerone phosphate synthase on the inhibition of human glioma U87MG cell line. Tumour Biol 2014; 36:3499-509. [DOI: 10.1007/s13277-014-2986-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022] Open
|