1
|
Hang Y, Meng X, Xi Y, Zhang D, Lin X, Liang F, Tian H, Li T, Wang T, Cao J, Fu Q, Dey S, Li S, Huang K, Kan H, Shi X, Liu Y. Atmospheric elemental carbon pollution and its regional health disparities in China. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2023; 18:124017. [PMID: 39036363 PMCID: PMC11259311 DOI: 10.1088/1748-9326/ad0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Previous studies have reported that atmospheric elemental carbon (EC) may pose potentially elevated toxicity when compared to total ambient fine particulate matter (PM2.5). However, most research on EC has been conducted in the US and Europe, whereas China experiences significantly higher EC pollution levels. Investigating the health impact of EC exposure in China presents considerable challenges due to the absence of a monitoring network to document long-term EC levels. Despite extensive studies on total PM2.5 in China over the past decade and a significant decrease in its concentration, changes in EC levels and the associated mortality burden remain largely unknown. In our study, we employed a combination of satellite remote sensing, available ground observations, machine learning techniques, and atmospheric big data to predict ground EC concentrations across China for the period 2005-2018, achieving a spatial resolution of 10 km. Our findings reveal that the national average annual mean EC concentration has remained relatively stable since 2005, even as total PM2.5 levels have substantially decreased. Furthermore, we calculated the all-cause non-accidental deaths attributed to long-term EC exposure in China using baseline mortality data and pooled mortality risk from a cohort study. This analysis unveiled significant regional disparities in the mortality burden resulting from long-term EC exposure in China. These variations can be attributed to varying levels of effectiveness in EC regulations across different regions. Specifically, our study highlights that these regulations have been effective in mitigating EC-related health risks in first-tier cities. However, in regions characterized by a high concentration of coal-power plants and industrial facilities, additional efforts are necessary to control emissions. This observation underscores the importance of tailoring environmental policies and interventions to address the specific challenges posed by varying emission sources and regional contexts.
Collapse
Affiliation(s)
- Yun Hang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Xia Meng
- School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Yuzhi Xi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Danlu Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Xiuran Lin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Hezhong Tian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People’s Republic of China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200235, People’s Republic of China
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Kan Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People’s Republic of China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
2
|
Patel H, Pavlichenko I, Grinthal A, Zhang CT, Alvarenga J, Kreder MJ, Weaver JC, Ji Q, Ling CWF, Choy J, Li Z, Black NL, Bispo PJM, Lewis JA, Kozin ED, Aizenberg J, Remenschneider AK. Design of medical tympanostomy conduits with selective fluid transport properties. Sci Transl Med 2023; 15:eadd9779. [PMID: 37018418 DOI: 10.1126/scitranslmed.add9779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Implantable tubes, shunts, and other medical conduits are crucial for treating a wide range of conditions from ears and eyes to brain and liver but often impose serious risks of device infection, obstruction, migration, unreliable function, and tissue damage. Efforts to alleviate these complications remain at an impasse because of fundamentally conflicting design requirements: Millimeter-scale size is required to minimize invasiveness but exacerbates occlusion and malfunction. Here, we present a rational design strategy that reconciles these trade-offs in an implantable tube that is even smaller than the current standard of care. Using tympanostomy tubes (ear tubes) as an exemplary case, we developed an iterative screening algorithm and show how unique curved lumen geometries of the liquid-infused conduit can be designed to co-optimize drug delivery, effusion drainage, water resistance, and biocontamination/ingrowth prevention in a single subcapillary-length-scale device. Through extensive in vitro studies, we demonstrate that the engineered tubes enabled selective uni- and bidirectional fluid transport; nearly eliminated adhesion and growth of common pathogenic bacteria, blood, and cells; and prevented tissue ingrowth. The engineered tubes also enabled complete eardrum healing and hearing preservation and exhibited more efficient and rapid antibiotic delivery to the middle ear in healthy chinchillas compared with current tympanostomy tubes, without resulting in ototoxicity at up to 24 weeks. The design principle and optimization algorithm presented here may enable tubes to be customized for a wide range of patient needs.
Collapse
Affiliation(s)
- Haritosh Patel
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ida Pavlichenko
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alison Grinthal
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Cathy T Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Jack Alvarenga
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Michael J Kreder
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - James C Weaver
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Qin Ji
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher W F Ling
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joseph Choy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Zihan Li
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Nicole L Black
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paulo J M Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Jennifer A Lewis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Elliott D Kozin
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aaron K Remenschneider
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA
| |
Collapse
|
3
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
4
|
Jotic A, Jesic S, Zivkovic M, Tomanovic N, Kuveljic J, Stankovic A. Polymorphisms in Toll-like receptors 2 and 4 genes and their expression in chronic suppurative otitis media. Auris Nasus Larynx 2015; 42:431-7. [PMID: 26055429 DOI: 10.1016/j.anl.2015.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/24/2015] [Accepted: 04/27/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Toll-like receptors (TLRs) have a prominent role in inducing innate immune response. It has been suggested that regulation of TLRs is involved in the pathogenesis of chronic otitis media. TLR 2 and TLR 4 polymorphisms were connected with susceptibility to acute otitis and chronic otitis with effusion. The objective of this study was to establish expression of TLR 2 and 4 on middle ear mucosa in different types of chronic suppurative otitis media (CSOM), and the influence of gene polymorphisms TLR 2 Arg753Gln and TLR 4 Thr399Ile and Asp299Gly to susceptibility to CSOM. MATERIAL AND METHODS Middle ear mucosa and full blood samples were obtained from 85 patients with chronic suppurative otitis media with and without cholesteatoma. Control group for mucosal TLR expression consisted of 71 samples of middle ear mucosa taken from patients with otosclerosis, and control group for DNA polymorphism consisted of 100 full blood samples in healthy subjects. DNA polymorphism detection was done with restriction fragment length polymorphism in RT PCR. Expression of TLR 2 and 4 was determined with immunohistochemical staining. RESULTS TLR 2 and TLR 4 expression on the middle ear mucosa was not influenced by age of the patients with chronic otitis media. Incidence of TLR 2 Arg753Gln polymorphism was significantly higher in patients with chronic otitis media, compared to control group. Significant association between TLR 2 Arg753Gln polymorphism and different types of mucosal changes in patients with chronic otitis media was established. TLR 2 and 4 expression on experimental group mucosa was significantly different compared to control group, where there was no expression (p=0.000). Strong dependence of TLR 2 and TLR 4 expression on middle ear mucosa with different mucosal changes and immunohistochemical activity after staining was detected. CONCLUSION Certain polymorphisms in TLR genes could be indicative for susceptibility to chronic otitis media. Expression of TLR 2 and 4 on middle ear mucosa was more dependable on different types of mucosal changes and type of CSOM than on bacteria found in the specimens. This can indicate that the type of mucosal changes are closely correlated with TLRs activity in middle ear.
Collapse
Affiliation(s)
- Ana Jotic
- Medical Faculty Belgrade, University of Belgrade, Serbia; Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, Belgrade, Serbia.
| | - Snezana Jesic
- Medical Faculty Belgrade, University of Belgrade, Serbia; Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Nada Tomanovic
- Institute of Pathology, Medical Faculty Belgrade, University of Belgrade, Serbia
| | - Jovana Kuveljic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|