1
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
2
|
Typiak M, Audzeyenka I, Dubaniewicz A. Presence and possible impact of Fcγ receptors on resident kidney cells in health and disease. Immunol Cell Biol 2022; 100:591-604. [DOI: 10.1111/imcb.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of General and Medical Biochemistry, Faculty of Biology University of Gdansk Gdansk Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of Molecular Biotechnology, Faculty of Chemistry University of Gdansk Gdansk Poland
| | - Anna Dubaniewicz
- Department of Pulmonology Medical University of Gdansk Gdansk Poland
| |
Collapse
|
3
|
PTEN-induced kinase 1 deficiency alters albumin permeability and insulin signaling in podocytes. J Mol Med (Berl) 2022; 100:903-915. [PMID: 35534645 DOI: 10.1007/s00109-022-02204-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Alterations of insulin signaling in diabetes are associated with podocyte injury, proteinuria, and renal failure. Insulin stimulates glucose transport to cells and regulates other intracellular processes that are linked to cellular bioenergetics, such as autophagy, gluconeogenesis, fatty acid metabolism, and mitochondrial homeostasis. The dysfunction of mitochondrial dynamics, including mitochondrial fusion, fission, and mitophagy, has been observed in high glucose-treated podocytes and renal cells from patients with diabetes. Previous studies showed that prolonged hyperglycemia is associated with the development of insulin resistance in podocytes, and high glucose-treated podocytes exhibit an increase in mitochondrial fission and decrease in markers of mitophagy. In the present study, we found that deficiency of the main mitophagy protein PTEN-induced kinase 1 (PINK1) significantly increased albumin permeability and hampered glucose uptake to podocytes. We suggest that PINK1 inhibition impairs the insulin signaling pathway, in which lower levels of phosphorylated Akt and membrane fractions of the insulin receptor and glucose transporter-4 were observed. Moreover, PINK1-depleted podocytes exhibited lower podocin and nephrin expression, thus identifying a potential mechanism whereby albumin leakage increases under hyperglycemic conditions when mitophagy is inhibited. In conclusion, we found that PINK1 plays an essential role in insulin signaling and the maintenance of proper permeability in podocytes. Therefore, PINK1 may be a potential therapeutic target for the treatment or prevention of diabetic nephropathy.
Collapse
|
4
|
Liu P, Zhang J, Wang Y, Shen Z, Wang C, Chen DQ, Qiu X. The Active Compounds and Therapeutic Target of Tripterygium wilfordii Hook. f. in Attenuating Proteinuria in Diabetic Nephropathy: A Review. Front Med (Lausanne) 2021; 8:747922. [PMID: 34621768 PMCID: PMC8490618 DOI: 10.3389/fmed.2021.747922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TWHF) is a traditional Chinese herbal medicine and widely used to treat diabetic kidney disease in China. Emerging evidences have revealed its ability to attenuate diabetic nephropathy (DN). Tripterygium wilfordii polyglycosides (TWPs), triptolide (TP), and celastrol are predominantly active compounds isolated from TWHF. The effects and molecular mechanisms of TWHF and its active compounds have been investigated in recent years. Currently, it is becoming clearer that the effects of TWHF and its active compounds involve in anti-inflammation, anti-oxidative stress, anti-fibrosis, regulating autophagy, apoptosis, and protecting podocytes effect. This review presents an overview of the current findings related to the effects and mechanisms of TWHF and its active compounds in therapies of DN, thus providing a systematic understanding of the mechanisms and therapeutic targets by which TWHF and its active compounds affect cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhengri Shen
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Yang Q, Wu FR, Wang JN, Gao L, Jiang L, Li HD, Ma Q, Liu XQ, Wei B, Zhou L, Wen J, Ma TT, Li J, Meng XM. Nox4 in renal diseases: An update. Free Radic Biol Med 2018; 124:466-472. [PMID: 29969717 DOI: 10.1016/j.freeradbiomed.2018.06.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species derived from NADPH oxidase contribute to a wide variety of renal diseases. Nox4, the major NADPH isoform in kidney, produces mainly H2O2 that regulates physiological functions. Nox4 contributes to redox processes involved in diabetic nephropathy, acute kidney injury, obstructive nephropathy, hypertensive nephropathy, renal cell carcinoma and other renal diseases by activating multiple signaling pathways. Although Nox4 is found in a variety of cell types, including epithelial cells, podocytes, mesangial cells, endothelial cells and fibroblasts, its role is not clear and even controversial. In some conditions, Nox4 protects cells by promoting cell survival in response to harmful stimuli. In other scenarios it induces cell apoptosis, inflammation or fibrogenesis. This functional variability may be attributed to distinct cell types, subcellular localization, molecular concentrations, disease type or stage, and other factors yet unexplored. In this setting, we reviewed the function and mechanism of Nox4 in renal diseases, highlighted the contradictions in Nox4 literature, and discussed promising therapeutic strategies targeting Nox4 in the treatment of certain types of renal diseases.
Collapse
Affiliation(s)
- Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Fan-Rong Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ling Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qiuying Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Luyu Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jiagen Wen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Tao Tao Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China.
| |
Collapse
|
6
|
Lay AC, Coward RJM. The Evolving Importance of Insulin Signaling in Podocyte Health and Disease. Front Endocrinol (Lausanne) 2018; 9:693. [PMID: 30524379 PMCID: PMC6258712 DOI: 10.3389/fendo.2018.00693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide, occuring in approximately one-third of diabetic patients. One of the earliest hallmarks of DKD is albuminuria, often occurring following disruptions to the glomerular filtration barrier. Podocytes are highly specialized cells with a central role in filtration barrier maintenance; hence, podocyte dysfunction is a major cause of albuminuria in many settings, including DKD. Numerous studies over the last decade have highlighted the importance of intact podocyte insulin responses in the maintenance of podocyte function. This review summarizes our current perspectives on podocyte insulin signaling, highlighting evidence to support the notion that dysregulated podocyte insulin responses contribute toward podocyte damage, particularly during the pathogenesis of DKD.
Collapse
|
7
|
Lay AC, Hurcombe JA, Betin VMS, Barrington F, Rollason R, Ni L, Gillam L, Pearson GME, Østergaard MV, Hamidi H, Lennon R, Welsh GI, Coward RJM. Prolonged exposure of mouse and human podocytes to insulin induces insulin resistance through lysosomal and proteasomal degradation of the insulin receptor. Diabetologia 2017; 60:2299-2311. [PMID: 28852804 PMCID: PMC6448913 DOI: 10.1007/s00125-017-4394-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Podocytes are insulin-responsive cells of the glomerular filtration barrier and are key in preventing albuminuria, a hallmark feature of diabetic nephropathy. While there is evidence that a loss of insulin signalling to podocytes is detrimental, the molecular mechanisms underpinning the development of podocyte insulin resistance in diabetes remain unclear. Thus, we aimed to further investigate podocyte insulin responses early in the context of diabetic nephropathy. METHODS Conditionally immortalised human and mouse podocyte cell lines and glomeruli isolated from db/db DBA/2J mice were studied. Podocyte insulin responses were investigated with western blotting, cellular glucose uptake assays and automated fluorescent imaging of the actin cytoskeleton. Quantitative (q)RT-PCR was employed to investigate changes in mRNA. Human cell lines stably overproducing the insulin receptor (IR) and nephrin were also generated, using lentiviral constructs. RESULTS Podocytes exposed to a diabetic environment (high glucose, high insulin and the proinflammatory cytokines TNF-α and IL-6) become insulin resistant with respect to glucose uptake and activation of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling. These podocytes lose expression of the IR as a direct consequence of prolonged exposure to high insulin concentrations, which causes an increase in IR protein degradation via a proteasome-dependent and bafilomycin-sensitive pathway. Reintroducing the IR into insulin-resistant human podocytes rescues upstream phosphorylation events, but not glucose uptake. Stable expression of nephrin is also required for the insulin-stimulated glucose uptake response in podocytes and for efficient insulin-stimulated remodelling of the actin cytoskeleton. CONCLUSIONS/INTERPRETATION Together, these results suggest that IR degradation, caused by high levels of insulin, drives early podocyte insulin resistance, and that both the IR and nephrin are required for full insulin sensitivity of this cell. This could be highly relevant for the development of nephropathy in individuals with type 2 diabetes, who are commonly hyperinsulinaemic in the early phases of their disease.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Jenny A Hurcombe
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Virginie M S Betin
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Lan Ni
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Lawrence Gillam
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Grace M E Pearson
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Mette V Østergaard
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - Hellyeh Hamidi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
8
|
Zhang Y, Ling Y, Yang L, Cheng Y, Yang P, Song X, Tang H, Zhong Y, Tang L, He S, Yang S, Chen A, Wang X. Liraglutide relieves myocardial damage by promoting autophagy via AMPK-mTOR signaling pathway in zucker diabetic fatty rat. Mol Cell Endocrinol 2017; 448:98-107. [PMID: 28363742 DOI: 10.1016/j.mce.2017.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 01/01/2023]
Abstract
Liraglutide, a glucose-lowering agent used to treat type 2 diabetic mellitus is reported to exert cardioprotective effects in clinical trials and animal experiments. However, the cardioprotective mechanism of liraglutide on diabetic cardiomyopathy has not been fully illustrated. The present study was performed to investigate whether liraglutide alleviates diabetic myocardium injury by promoting autophagy and its underlying mechanisms. Our results show that liraglutide significantly reduced the levels of creatine kinase (CK) and lactate dehydrogenase (LDH), improved left ventricular functional status and alleviated myocardial fibrosis in the Zucker diabetic fatty (ZDF) rat model. Liraglutide also mitigated high glucose-induced injury in NRCs. However these effects were partly reversed by the autophagic inhibitor chloroquine (CQ). Liraglutide promoted myocardial autophagy in the vivo and in the vitro models. Furthermore, liraglutide-induced enhancement of autophagy was related to increased AMPK phosphorylation and decreased mTOR phosphorylation, which was partially abolished by the AMPK inhibitor compound C (Comp C). Collectively, our data provide evidence that liraglutide mediated diabetic myocardium injury by promoting AMPK-dependent autophagy.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yuanna Ling
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Li Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yanzhen Cheng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Xudong Song
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Huixiong Tang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yongkang Zhong
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Lu Tang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Shangfei He
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Shuangli Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| |
Collapse
|
9
|
Audzeyenka I, Rogacka D, Piwkowska A, Angielski S, Jankowski M. Viability of primary cultured podocytes is associated with extracellular high glucose-dependent autophagy downregulation. Mol Cell Biochem 2017; 430:11-19. [PMID: 28236091 PMCID: PMC5437172 DOI: 10.1007/s11010-017-2949-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022]
Abstract
Structural and functional impairment of podocytes plays an important role in the development of diabetic nephropathy, a chronic complication of diabetes mellitus and leading cause of renal failure requiring renal replacement therapy. Autophagy plays a crucial role in podocyte viability and function, and its activity is modulated by a variety of pathophysiological factors found in diabetic milieu. Here we show that downregulation of autophagy is critical for podocyte survival in hyperglycemic environment. Moreover, long-term exposure to high glucose leads to inhibition of autophagy as well as to the development of insulin resistance in podocytes. Furthermore, impairment of autophagy is involved in alteration of insulin-dependent glucose uptake in podocytes, suggesting a relationship between these two processes. Taken together, our findings suggest that downregulation of podocyte autophagy, observed after long-term exposure to high glucose, results from their suppressed sensitivity to insulin, and may therefore lead to diminished podocyte cell viability as well as their reduced number in glomerulus.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland.
| | - Dorota Rogacka
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland
| | - Agnieszka Piwkowska
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland
| | - Stefan Angielski
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland
| | - Maciej Jankowski
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland.,Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|