1
|
Shi L, Zhang S, Liu G, Nie Z, Ding P, Chang W, Dai Y, Ma X. Toxin protein LukS-PV targeting complement receptor C5aR1 inhibits cell proliferation in hepatocellular carcinoma via the HDAC7-Wnt/β-catenin axis. J Biol Chem 2025; 301:108148. [PMID: 39736396 PMCID: PMC11910327 DOI: 10.1016/j.jbc.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant tumors. Complement system has become a new focus of cancer research by changing the biological behavior of cancer cells to influence the growth of cancer. Recent studies reported that the complement C5a-C5aR1 axis can promote the malignant phenotype of multiple tumors through various signaling pathways. LukS-PV (Panton-Valentine), the S component of Staphylococcus aureus-secreted PV leucocidin, can also bind C5aR1 specifically. This project aims to investigate the role of LukS-PV on HCC cell proliferation and explore underlying molecular mechanisms. Our findings revealed that LukS-PV targeting C5aR1 inhibited HCC cell proliferation in vitro and in vivo. Interestingly, we discovered that LukS-PV inhibited the proliferation of HCC cells by upregulating the acetylation level of β-catenin to promote its protein degradation. In addition, histone deacetylase (HDAC)7 identified as a regulator mediates the deacetylation of β-catenin. Furthermore, our results showed that LukS-PV inhibited proliferation in HCC cells by downregulating HDAC7 to promote the degradation of β-catenin through ubiquitin-proteasome system. Collectively, our findings revealed that LukS-PV targeting C5aR1 inhibits HCC cell proliferation through the HDAC7-Wnt/β-catenin axis. These results revealing a novel mechanism that LukS-PV as a bacterial toxin inhibits HCC cell proliferation through epigenetic remodeling by targeting complement receptor C5aR1, suggest the strong potential of LukS-PV as a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Lan Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Zhang
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhengchao Nie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Pengsheng Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjiao Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Jiang YX, Zhao YN, Yu XL, Yin LM. Ginsenoside Rd Induces Differentiation of Myeloid Leukemia Cells via Regulating ERK/GSK-3β Signaling Pathway. Chin J Integr Med 2024; 30:588-599. [PMID: 38085388 DOI: 10.1007/s11655-023-3561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the role of ginsenoside Rd (GRd) in acute myeloid leukemia (AML) cell differentiation. METHODS AML cells were treated with GRd (25, 50, 100 and 200 µg/mL), retinoic acid (RA, 0.1g/L) and PD98059 (20 mg/mL) for 72 h, cell survival was detected by methylthiazolyldiphenyl-tetrazolium bromide and colony formation assays, and cell cycle was detected by flow cytometry. Cell morphology and differentiation were observed by Wright-Giemsa staining, peroxidase chemical staining and cellular immunochemistry assay, respectively. The protein expression levels of GATA binding protein 1 (GATA-1), purine rich Box-1 (PU.1), phosphorylated-extracellular signal-related kinase (p-ERK), ERK, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), GSK3β and signal transducer and activator of transcription 1 (STAT1) were detected by Western blot. Thirty-six mice were randomly divided into 3 groups using a random number table: model control group (non-treated), GRd group [treated with 200 mg/(kg·d) GRd] and homoharringtonine (HTT) group [treated with 1 mg/(kg·d) HTT]. A tumor-bearing nude mouse model was established, and tumor weight and volume were recorded. Changes of subcutaneous tumor tissue were observed after hematoxylin and eosin staining. WT1 and GATA-1 expressions were detected by immunohistochemical staining. RESULTS The cell survival was inhibited by GRd in a dose-dependent manner and GRd caused G0/G1 cell arrest (p<0.05). GRd treatment induced leukemia cell differentiation, showing increased expressions of peroxidase and specific proteins concerning erythrogenic or granulocytic differentiation (p<0.05). GRd treatment elicited upregulation of p-ERK, p-GSK-3β and STAT1 expressions in cells, and reversed the effects of PD98059 on inhibiting the expressions of peroxidase, GATA-1 and PU.1 (P<0.05). After GRd treatment, tumor weight and volume of mice were decreased, and tumor cells underwent massive apoptosis and necrosis (P<0.05). WT1 level was decreased, and GATA-1 level was significantly increased in subcutaneous tumor tissues (P<0.05 or P<0.01). CONCLUSION GRd might induce the differentiation of AML cells via regulating the ERK/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Yan-Na Zhao
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Li-Ming Yin
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
3
|
Haghighatafshar H, Golestani Eimani B, Moazamian E, Amani J. Cytotoxic and apoptotic effects of chemically synthesized silver nanoparticles loaded with recombinant Staphylococcus LukS-PV toxin. J Biotechnol 2023; 373:42-48. [PMID: 37421980 DOI: 10.1016/j.jbiotec.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Chronic myeloid leukemia (CML) accounts for approximately 15% of leukemias. LukS-PV, a Panton-Valentine leucocidin (PVL) component, is secreted by Staphylococcus aureus. Silver nanoparticles have increasingly been used for different purposes, most notably for drug delivery and anticancer agents. In this work, the cytotoxicity effect of recombinant LukS-PV protein, chemically synthesized AgNPs, and recombinant LukS-PV protein-loaded silver nanoparticles was investigated on human Chronic myeloid leukemia K562 cells and human normal embryonic kidney HEK293 cells. Cell apoptosis was investigated by staining with Annexin V/propidium iodide. The recombinant LukS-PV protein-loaded silver nanoparticles exhibited dose-dependent cytotoxicity and induced apoptosis in the K562 cells but had little effect on normal HEK293 cells. After 24 h of exposure to recombinant LukS-PV protein-loaded silver nanoparticles (IC50 concentration), flow cytometry showed that 31.17% of K562 cells were apoptotic. These results indicate that recombinant LukS-PV protein-loaded silver nanoparticles maybe are a potential chemotherapeutic agent candidate against K562 cells. Hence, silver nanoparticles could be used as drug carriers for toxin release to cancer cells.
Collapse
Affiliation(s)
- Hafizeh Haghighatafshar
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | - Elham Moazamian
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Haghighatafshar H, Golestani Eimani B, Moazamian E, Amani J. The anticancer effect of recombinant LukS-PV protein and silver nanoparticles loaded with this protein. AMB Express 2023; 13:55. [PMID: 37289339 DOI: 10.1186/s13568-023-01558-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
LukS-PV is a component of Panton-Valentine leucocidin (PVL) and is secreted by Staphylococcus aureus. Silver nanoparticles exhibit considerable potential as anticancer agents and drug delivery systems. Drug delivery is a way to deliver medicinal combinations to achieve a beneficial therapeutic effect. In the current study, recombinant LukS-PV protein-loaded silver nanoparticles were prepared and their cytotoxicity effect was analyzed on human breast cancer cells and human normal embryonic kidneys cells by MTT assay. Apoptosis was investigated by staining with Annexin V/propidium iodide. The recombinant LukS-PV protein-loaded silver nanoparticles showed dose-dependent cytotoxicity and induced apoptosis in the MCF7 cells and had a lesser effect on HEK293 cells. After 24 h exposure to the recombinant LukS-PV protein-loaded silver nanoparticles (IC50), Annexin V-FITC/PI FCM revealed that 33.2% of MCF7 cells were apoptotic. In conclusion, recombinant LukS-PV protein-loaded silver nanoparticles probably cannot be a better alternative for the targeted healing approaches to cancer therapies. Hence, it is suggested that silver nanoparticles could be utilized as a delivery system for releasing toxins into cancer cells.
Collapse
Affiliation(s)
- Hafizeh Haghighatafshar
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | - Elham Moazamian
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen S, Liao Y, Lv J, Hou H, Feng J. Quantitative Proteomics Based on iTRAQ Reveal that Nitidine Chloride Induces Apoptosis by Activating JNK/c-Jun Signaling in Hepatocellular Carcinoma Cells. PLANTA MEDICA 2022; 88:1233-1244. [PMID: 35104905 DOI: 10.1055/a-1676-4307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to investigate the cytotoxic effects and underlying molecular mechanisms of nitidine chloride (NC) in hepatocellular carcinoma cells via quantitative proteomics. MTT assays were used to detect the inhibitory effects of NC in Bel-7402 liver cancer cells, and the number of apoptotic cells was measured by flow cytometry. Quantitative proteomics technology based on iTRAQ was used to discover differential expressed proteins after NC treatment, and bioinformatic techniques were further used to screen potential targets of NC. Molecular docking was applied to evaluate the docking activity of NC with possible upstream proteins, and their expression was detected at the mRNA and protein levels by quantitative reverse transcription PCR and western blotting. NC inhibited the proliferation of Bel-7402 cells after 24 h of treatment and stimulated apoptosis in vitro. The proteomics experiment showed that NC triggers mitochondrial damage in HCC cells and transcription factor AP-1 (c-Jun) may be a potential target of NC (fold change = 4.36 ± 0.23). Molecular docking results revealed the highest docking score of NC with c-Jun N-terminal kinase (JNK), one of the upstream proteins of c-Jun. Moreover, the mRNA and protein expression of c-Jun and JNK were significantly increased after NC treatment (p < 0.05). These findings indicate that NC significantly induced mitochondrial damage in HCC cells, and induced apoptosis by activating JNK/c-Jun signaling.
Collapse
Affiliation(s)
- Shipeng Chen
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Pharmacy, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yinan Liao
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinyan Lv
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Huaxin Hou
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Nie Z, Shi L, Song K, Xu X, Ding P, Lu B, Wu G, Ma X. LukS-PV inhibits the proliferation of hepatocellular carcinoma cells by maintaining FOXO3 stability via the PI3K/AKT signaling pathway. Cell Signal 2022; 95:110357. [PMID: 35589047 DOI: 10.1016/j.cellsig.2022.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma(HCC) is one of the common malignant tumors. LukS-PV is the S component of Panton-Valetine leukocidin(PVL) secreted by Staphylococcus aureus. Forkhead box O3 (FOXO3) is a member of the FOXO subfamily of transcription factors that acts as a tumor suppressor. In this study, we investigated the role of LukS-PV on the proliferation of HCC and explored possible mechanisms. We treated HCC cells with various concentrations of LukS-PV and evaluated the effect of LukS-PV on cell viability using the cell counting kit-8 and colony formation assays. Real-time PCR and western blot assays were used to analyze mRNA and protein expression levels, respectively. Immunofluorescence staining was performed to examine the intracellular localization of FOXO3. The expression of FOXO3 and its downstream target genes were analyzed by immunohistochemical staining. The protein synthesis inhibitor cycloheximide and the proteosome inhibitor MG132 were used to explore the potential mechanisms by which LukS-PV regulated FOXO3. We demonstrated that LukS-PV inhibited the proliferation of HCC cells in a concentration dependent manner. LukS-PV upregulated FOXO3 expression both in vitro and in vivo. Moreover, LukS-PV facilitated the entry of FOXO3 into the nucleus and, subsequently, regulated the transcription of downstream target genes. In addition, we discovered that LukS-PV decreased the expression of phosphorylated FOXO3 through the PI3K/AKT signaling pathway and maintained FOXO3 protein stability via the ubiquitin-proteasome pathway. Taken together, our data indicated that LukS-PV exert anticancer activities through FOXO3. LukS-PV may be a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Zhengchao Nie
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lan Shi
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaidi Song
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuexue Xu
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengsheng Ding
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bing Lu
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Gang Wu
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoling Ma
- The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Xu LF, Shi L, Zhang SS, Ding PS, Ma F, Song KD, Qiang P, Chang WJ, Dai YY, Mei YD, Ma XL. LukS-PV Induces Apoptosis via the SET8-H4K20me1-PIK3CB Axis in Human Acute Myeloid Leukemia Cells. Front Oncol 2021; 11:718791. [PMID: 34745943 PMCID: PMC8565356 DOI: 10.3389/fonc.2021.718791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Evidence suggests that histone modification disorders are involved in leukemia pathogenesis. We previously reported that LukS-PV, a component of Panton-Valentine leukocidin (PVL), has antileukemia activities that can induce differentiation, increase apoptosis, and inhibit proliferation of acute myeloid leukemia (AML) cells. Furthermore, LukS-PV inhibited hepatoma progression by regulating histone deacetylation, speculating that LukS-PV may exert antileukemia activity by targeting histone modification regulators. In this study, the results showed that LukS-PV induced apoptosis by downregulating the methyltransferase SET8 and its target histone H4 monomethylated at Lys 20 (H4K20me1). Furthermore, chromatin immunoprecipitation sequencing and polymerase chain reaction identified the kinase PIK3CB as a downstream target gene for apoptosis mediated by SET8/H4K20me1. Finally, our results indicated that LukS-PV induced apoptosis via the PIK3CB-AKT-FOXO1 signaling pathway by targeting SET8. This study indicates that SET8 downregulation is one of the mechanisms by which LukS-PV induces apoptosis in AML cells, suggesting that SET8 may be a potential therapeutic target for AML. Furthermore, LukS-PV may be a drug candidate for the treatment of AML that targets epigenetic modifications.
Collapse
Affiliation(s)
- Liang Fei Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lan Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Shan Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Sheng Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kai Di Song
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Qiang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Jiao Chang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuan Yuan Dai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi De Mei
- University of Science and Technology of China, School of Life Sciences and Medicine, USTC Life Sciences, Hefei, China
| | - Xiao Ling Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,University of Science and Technology of China, School of Life Sciences and Medicine, USTC Life Sciences, Hefei, China
| |
Collapse
|
8
|
Lang J, Yang C, Liu L, Li L, Wu L, Liu Y, Luo H, Yan L, Chen S, Ning J, Yang C. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers. Exp Cell Res 2021; 403:112550. [PMID: 33675806 DOI: 10.1016/j.yexcr.2021.112550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Increased matrix metalloproteinase 9 (MMP9) expression is involved in delayed wound healing in diabetic foot ulcers. We created skin wounds in normal SD rats and STZ-induced diabetic SD rats, then we found protein levels of activator protein-1 (AP1), a crucial transcription factor to increase MMP9 transcription, as well as MMP9 was up-regulated in epithelium of diabetic skin tissues. Then, we evaluated the mRNA and protein stability of AP1 subunits C-FOS/C-Jun in HaCaT cells after high glucose treatment. Results showed that high glucose could increase protein stability of C-FOS and C-Jun. Additionally, high glucose also activated extracellular signaling-related kinase 1/2 (ERK1/2). ERK1/2 inhibitor could rescue phosphorylation of C-FOS and C-Jun, increased protein stability of C-Jun, and increased MMP9 expressions. Thus, our study demonstrated that high glucose could activate ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic skin and HaCaT cells.
Collapse
Affiliation(s)
- Jiangli Lang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chen Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lixuan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Li
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liangyan Wu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanyan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hengli Luo
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Sifan Chen
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, People's Republic of China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Quantitative proteomic analysis reveals that Luks-PV exerts antitumor activity by regulating the key proteins and metabolic pathways in HepG2 cells. Anticancer Drugs 2019; 31:223-230. [PMID: 31789624 PMCID: PMC7028286 DOI: 10.1097/cad.0000000000000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a complicated and poor prognosis cancer, necessitating the development of a potential treatment strategy. In this study, we initially revealed that LukS-PV belonged to leukocidin family performs an anti-HCC action. Then, we used liquid chromatography-mass spectrometry (LC/MS) to compare protein expression profiles of the LukS-PV-treated human HCC cell lines HepG2 and the control cells. GO annotations and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out of differential expression followed by protein-protein interactome, to explore the underlying cancer suppressor mechanisms of LukS-PV for human HCC. A total of 88 upregulated proteins and 46 downregulated proteins were identified. The top 10 proteins identified by the MCC method are FN1, APP, TIMP1, nucleobindin-1, GOLM1, APLP2, CYR61, CD63, ENG, and CD9. Our observation on protein expression indicated that LukS-PV produces a signature affecting central carbon metabolism in cancer, galactose metabolism, and fructose and mannose metabolism pathways. The results give a functional effects and molecular mechanism insight, following LukS-PV treatment.
Collapse
|
10
|
Zhao M, Li L, Zhou J, Cui X, Tian Q, Jin Y, Zhu Y. MiR-2861 Behaves as a Biomarker of Lung Cancer Stem Cells and Regulates the HDAC5-ERK System Genes. Cell Reprogram 2018; 20:99-106. [PMID: 29620443 DOI: 10.1089/cell.2017.0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer initiating, recurrence, and drug resistance. Discovery of novel biomarkers for CSCs is helpful for early diagnosis and prognosis. Lung cancer stem cells (LCSCs) were closely related to the occurrence and development of lung cancer. In our study, the important role of miR-2861 in maintaining the stemness of LCSCs was investigated. The LCSC differentiation model was established through introducing serum into the medium of H460 spheres. miR-2861 expression was significantly higher in LCSCs no matter compared to the differentiation cells or normal cells. HDAC5 expression was positively correlated with miR-2861 in LCSCs, and knockdown of miR-2861 decreased the expression of HDAC5, which implied that HDAC5 may be involved in the differentiation of LCSCs mediated by miR-2861. The role of HDAC5 in the regulation of LCSC differentiation was further verified by the inhibitory effect of LMK-235 on the phosphorylation of ERK1/2, which was recognized as the regulator of CSC differentiation. Our study provided a better understanding of miR-2861 and HDAC5 axis in maintaining the stemness of LCSCs and laid a foundation for molecular targeted therapy.
Collapse
Affiliation(s)
- Mengya Zhao
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Lin Li
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| | - Jundong Zhou
- 3 Department of Radio Oncology, Affiliated Suzhou Hospital, Nanjing Medical University , Suzhou, China
| | - Xueyuan Cui
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Qingmei Tian
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,4 School of Pharmacy, Xi'an Jiaotong University , Xi'an, China
| | - Yaqing Jin
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,5 University of Chinese Academy of Sciences , Beijing, China
| | - Yimin Zhu
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
11
|
Is LukS-PV a novel experimental therapy for leukemia? Gene 2016; 600:44-47. [PMID: 27916717 DOI: 10.1016/j.gene.2016.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Although the studies on the pathogenesis and prognosis of leukemia have made revolutionary progress, the long-term survival remains unsatisfactory. Alternative techniques are being developed to target leukemia. Several decades after researchers' work, a variety of bacteria toxins are being explored as potential anti-leukemia agents, either to provide direct effects or to deliver therapeutic proteins to leukemia. LukS-PV, a component of Panton-Valentine Leukocidin secreted by S. aureus, has been tested in acute myeloid leukemia as a novel experimental strategy. Further researches about the targeting mechanisms of LukS-PV are required to make it a complete therapeutic approach for leukemia treatment. The function of this article is to provide clinicians and experimentalists with a chronological and comprehensive appraisal of use of LukS-PV as an experimental strategy for leukemia therapy.
Collapse
|