1
|
Gerrard JC, Hay JP, Adams RN, Williams JC, Huot JR, Weathers KM, Marino JS, Arthur ST. Current Thoughts of Notch's Role in Myoblast Regulation and Muscle-Associated Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312558. [PMID: 34886282 PMCID: PMC8657396 DOI: 10.3390/ijerph182312558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch’s contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch’s importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch’s contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch’s orchestration is useful for developing therapeutic targets for disease.
Collapse
Affiliation(s)
- Jeffrey C. Gerrard
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Jamison P. Hay
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Ryan N. Adams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - James C. Williams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Kaitlin M. Weathers
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joseph S. Marino
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Susan T. Arthur
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
- Correspondence:
| |
Collapse
|
2
|
Shan T, Liu J, Xu Z, Wang Y. Roles of phosphatase and tensin homolog in skeletal muscle. J Cell Physiol 2018; 234:3192-3196. [DOI: 10.1002/jcp.26820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Tizhong Shan
- Institute of Feed Science, College of Animal Sciences Zhejiang University Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition Ministry of Education Hangzhou China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition Hangzhou China
| | - Jiaqi Liu
- Institute of Feed Science, College of Animal Sciences Zhejiang University Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition Ministry of Education Hangzhou China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition Hangzhou China
| | - Ziye Xu
- Institute of Feed Science, College of Animal Sciences Zhejiang University Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition Ministry of Education Hangzhou China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition Hangzhou China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences Zhejiang University Hangzhou China
- The Key Laboratory of Molecular Animal Nutrition Ministry of Education Hangzhou China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition Hangzhou China
| |
Collapse
|
3
|
The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration. Int J Mol Sci 2018; 19:ijms19103125. [PMID: 30314396 PMCID: PMC6212977 DOI: 10.3390/ijms19103125] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
AMPK (5’-adenosine monophosphate-activated protein kinase) is heavily involved in skeletal muscle metabolic control through its regulation of many downstream targets. Because of their effects on anabolic and catabolic cellular processes, AMPK plays an important role in the control of skeletal muscle development and growth. In this review, the effects of AMPK signaling, and those of its upstream activator, liver kinase B1 (LKB1), on skeletal muscle growth and atrophy are reviewed. The effect of AMPK activity on satellite cell-mediated muscle growth and regeneration after injury is also reviewed. Together, the current data indicate that AMPK does play an important role in regulating muscle mass and regeneration, with AMPKα1 playing a prominent role in stimulating anabolism and in regulating satellite cell dynamics during regeneration, and AMPKα2 playing a potentially more important role in regulating muscle degradation during atrophy.
Collapse
|
4
|
Jiao Y, Huang B, Chen Y, Hong G, Xu J, Hu C, Wang C. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle. Int J Mol Sci 2018; 19:ijms19010271. [PMID: 29337929 PMCID: PMC5796217 DOI: 10.3390/ijms19010271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling as a conserved cell fate regulator is involved in the regulation of cell quiescence, proliferation, differentiation and postnatal tissue regeneration. However, how Notch signaling regulates porcine satellite cells (PSCs) has not been elucidated. We stably transfected Notch1 intracellular domain (N1ICD) into PSCs to analyze the gene expression profile and miRNA-seq. The analysis of the gene expression profile identified 295 differentially-expressed genes (DEGs) in proliferating-N1ICD PSCs (P-N1ICD) and nine DEGs on differentiating-N1ICD PSCs (D-N1ICD), compared with that in control groups (P-Control and D-Control, respectively). Analyzing the underlying function of DEGs showed that most of the upregulated DEGs enriched in P-N1ICD PSCs are related to the cell cycle. Forty-four and 12 known differentially-expressed miRNAs (DEMs) were identified in the P-N1ICD PSCs and D-N1ICD PSCs group, respectively. Furthermore, we constructed the gene-miRNA network of the DEGs and DEMs. In P-N1ICD PSCs, miR-125a, miR-125b, miR-10a-5p, ssc-miR-214, miR-423 and miR-149 are downregulated hub miRNAs, whose corresponding hub genes are marker of proliferation Ki-67 (MKI67) and nuclear receptor binding SET domain protein 2 (WHSC1). By contrast, miR-27a, miR-146a-5p and miR-221-3p are upregulated hub miRNAs, whose hub genes are RUNX1 translocation partner 1 (RUNX1T1) and fibroblast growth factor 2 (FGF2). All the hub miRNAs and genes are associated with cell proliferation. Quantitative RT-PCR results are consistent with the gene expression profile and miRNA-seq results. The results of our study provide valuable information for understanding the molecular mechanisms underlying Notch signaling in PSCs and skeletal muscle development.
Collapse
Affiliation(s)
- Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Guangliang Hong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jian Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wei DW, Ma XY, Zhang S, Hong JY, Gui LS, Mei CG, Guo HF, Wang L, Ning Y, Zan LS. Characterization of the promoter region of the bovine SIX1 gene: Roles of MyoD, PAX7, CREB and MyoG. Sci Rep 2017; 7:12599. [PMID: 28974698 PMCID: PMC5626756 DOI: 10.1038/s41598-017-12787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measurement traits (BMTs). However, the transcriptional regulation of SIX1 remains unclear. In the present study, we determined that bovine SIX1 was highly expressed in the longissimus thoracis. To elucidate the molecular mechanisms involved in bovine SIX1 regulation, 2-kb of the 5' regulatory region were obtained. Sequence analysis identified neither a consensus TATA box nor a CCAAT box in the 5' flanking region of bovine SIX1. However, a CpG island was predicted in the region -235 to +658 relative to the transcriptional start site (TSS). An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with serial deletion constructs of the 5' flanking region, site-directed mutation and siRNA interference demonstrated that MyoD, PAX7 and CREB binding occur in region -689/-40 and play important roles in bovine SIX1 transcription. In addition, MyoG drives SIX1 transcription indirectly via the MEF3 motif. Taken together these interactions suggest a key functional role for SIX1 in mediating skeletal muscle growth in cattle.
Collapse
Affiliation(s)
- Da-Wei Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xue-Yao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Song- Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jie-Yun Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chu-Gang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong-Fang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li- Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yue- Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Shan T, Xu Z, Liu J, Wu W, Wang Y. Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis. J Cell Physiol 2017; 232:2653-2656. [DOI: 10.1002/jcp.25786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Tizhong Shan
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Zhejiang University; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Ziye Xu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Zhejiang University; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Jiaqi Liu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Zhejiang University; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Weiche Wu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Zhejiang University; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Yizhen Wang
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Zhejiang University; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Zhejiang University; Hangzhou Zhejiang P. R. China
| |
Collapse
|
7
|
Xu Z, Liu J, Shan T. New Roles of Lkb1 in Regulating Adipose Tissue Development and Thermogenesis. J Cell Physiol 2017; 232:2296-2298. [PMID: 27731500 DOI: 10.1002/jcp.25643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
Adipose tissues regulate energy metabolism and reproduction. There are three types of adipocytes (brown, white, and beige adipocytes) in mammals. White adipocytes store energy and are closely associated with obesity and other metabolic diseases. The beige and brown adipocytes have numerous mitochondria and high levels of UCP1 that dissipates lipid to generate heat and defend against obesity. The global epidemic of obesity and its associated metabolic diseases urge an imperative need for understating the regulation of adipogenesis. Liver kinase B1 (Lkb1), also called STK11, is a master kinase of the AMPK subfamily and plays crucial roles in regulating glucose and energy homeostasis in various metabolic tissues. In this review, we focus on the regulatory roles of Lkb1 in regulating preadipocyte differentiation, adipose tissue development, and thermogenesis. J. Cell. Physiol. 232: 2296-2298, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Shan T, Xu Z, Wu W, Liu J, Wang Y. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis. J Cell Physiol 2017; 232:2964-2967. [DOI: 10.1002/jcp.25730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Tizhong Shan
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Ziye Xu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Weiche Wu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Jiaqi Liu
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| | - Yizhen Wang
- College of Animal Sciences; Zhejiang University; Hangzhou Zhejiang P. R. China
- The Key Laboratory of Molecular Animal Nutrition; Ministry of Education; Hangzhou Zhejiang P. R. China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition; Hangzhou Zhejiang P. R. China
| |
Collapse
|
9
|
Tao HY, Qu ZY, Wei GM, Sheng J, Wang WL, Wan LX. Role of LKB1 in proliferation and apoptosis of gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2016; 24:3262-3269. [DOI: 10.11569/wcjd.v24.i21.3262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of LKB1 in gastric cancer cells and the related mechanism.
METHODS: Real-time PCR and Western blot were used to detect the expression of LKB1 in SGC7901 cells carrying LKB1 expression vector or siRNA against LKB1. Flow cytometry was used to detect the apoptosis of SGC7901 cells after LKB1 overexpression or knockdown. Reactive oxygen detection kits were applied to detect the impact of LKB1 on ROS production. MTT method was used to determine intracellular ROS production after NAC inhibition. Western blot was used to detect the expression of apoptosis related proteins in SGC7901 cells after LKB1 overexpression or knockdown.
RESULTS: LKB1 expression was efficiently enhanced or silenced by LKB1 expression vector or siRNA against LKB1, respectively. The number of SGC7901 cells decreased as its proliferation rate decreased and apoptosis rate increased (3.54% vs 1.29%). Intracellular ROS production was increased but blunted by the use of NAC. The apoptosis of SGC7901 cells was significantly reduced following the inhibition of intracellular ROS, but the siRNA transfected group exhibited an opposite trend. Western blot analysis showed that LKB1 overexpression up-regulated the expression of cleaved Caspase3 in SGC7901 cells significantly (about 3.12 times), compared with control cells, but the expression of cleaved Caspase3 in the siRNA transfected group was decreased.
CONCLUSION: LKB1 raises the production of ROS and up-regulates the expression of cleaved Caspase3 to promote gastric cancer cell apoptosis. Hence, LKB1 plays an important role in the development of gastric cancer and it may be a valuable target for chemotherapy of gastric cancer.
Collapse
|