1
|
McClelland C, Holland OJ, Shrestha N, Jukes CL, Brandon AE, Cuffe JSM, Perkins AV, McAinch AJ, Hryciw DH. Maternal Diet High in Linoleic Acid Alters Renal Branching Morphogenesis and mTOR/AKT Signalling Genes in Rat Fetal Kidneys. Int J Mol Sci 2024; 25:4688. [PMID: 38731907 PMCID: PMC11083378 DOI: 10.3390/ijms25094688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.
Collapse
Affiliation(s)
- Connie McClelland
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; (C.M.); (O.J.H.); (N.S.); (A.V.P.)
| | - Olivia J. Holland
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; (C.M.); (O.J.H.); (N.S.); (A.V.P.)
- Women’s Newborn and Childrens Services, Gold Coast Hospital and Health Service, Southport, QLD 4215, Australia
| | - Nirajan Shrestha
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; (C.M.); (O.J.H.); (N.S.); (A.V.P.)
| | - Claire L. Jukes
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (C.L.J.); (A.E.B.)
| | - Anna E. Brandon
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (C.L.J.); (A.E.B.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Anthony V. Perkins
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; (C.M.); (O.J.H.); (N.S.); (A.V.P.)
- School of Health, University of Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H. Hryciw
- Women’s Newborn and Childrens Services, Gold Coast Hospital and Health Service, Southport, QLD 4215, Australia
- Griffith Institute of Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Molecular determinants of protein reabsorption in the amphibian kidneys. Acta Histochem 2021; 123:151760. [PMID: 34303296 DOI: 10.1016/j.acthis.2021.151760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
Participation of molecular determinants of endocytosis in the processes of glomerular filtration and tubular reabsorption of albumin and lysozyme in the mesonephros of grass frogs (Rana temporaria L.), lake frogs (Rana ridibunda P.), and newts (Triturus vulgaris L.) is investigated. In all studied species, the constitutive expression of endocytic receptors in proximal tubule (PT) cells is established using immunofluorescence microscopy and immunoblotting. The certain stages of lysozyme and albumin endocytosis involving megalin/LRP2, cubilin, clathrin and protein Rab11 are detailed, and the central role of ligand-induced megalin/LRP2 activity in this process is shown. Increased ligand-induced expression for clathrin and Rab11was also found. In grass frogs, the different patterns of endocytic receptors and both absorbed proteins in the initial parts of proximal tubules suggest the proximo-distal specialization of absorptive processes along these tubule segments, similar to this in more complex mammalian nephrons. This data, as well as the revealed peculiarities of ligand-receptor interactions during intracellular trafficking of proteins prove that megalin is mainly involved in the absorption of lysozyme. At the same time, albumin absorption is mediated by both receptors, or cubilin contributes the most. The detection of endocytic receptor in glomerular structural elements in frogs and newts suggests the participation of filtration barrier components in endocytosis of filterable proteins. The results represent a new contribution to the study of the fundamental mechanisms of renal protein uptake in the amphibian mesonephros as a more primitive kidney compared to mammalian metanephros.
Collapse
|
3
|
The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients. Int J Mol Sci 2021; 22:ijms22094685. [PMID: 33925217 PMCID: PMC8125133 DOI: 10.3390/ijms22094685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Leptin is an adipokine that regulates appetite and body mass and has many other pleiotropic functions, including regulating kidney function. Increased evidence shows that chronic kidney disease (CKD) is associated with hyperleptinemia, but the reasons for this phenomenon are not fully understood. In this review, we focused on potential causes of hyperleptinemia in patients with CKD and the effects of elevated serum leptin levels on patient kidney function and cardiovascular risk. The available data indicate that the increased concentration of leptin in the blood of CKD patients may result from both decreased leptin elimination from the circulation by the kidneys (due to renal dysfunction) and increased leptin production by the adipose tissue. The overproduction of leptin by the adipose tissue could result from: (a) hyperinsulinemia; (b) chronic inflammation; and (c) significant lipid disturbances in CKD patients. Elevated leptin in CKD patients may further deteriorate kidney function and lead to increased cardiovascular risk.
Collapse
|
4
|
Liu B, Qiao J, Hu J, Fan M, Zhao Y, Su H, Wang Z, Yu Q, Ma Q, Li Y, Lv Z, Wang R. Leptin promotes endothelial dysfunction in chronic kidney disease by modulating the MTA1-mediated WNT/β-catenin pathway. Mol Cell Biochem 2020; 473:155-166. [PMID: 32632610 DOI: 10.1007/s11010-020-03816-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction (ED) has a high incidence in chronic kidney disease (CKD) and is identified as a precursor to cardiovascular events. Recent studies suggest that leptin may be the missing link between ED and CKD. The objective of this study was to investigate the mechanism by which leptin causes ED and the connection with leptin and indicators of ED in CKD patients. Analysis of leptin-treated human umbilical vein endothelial cells (HUVECs) showed increased expression of interleukin 6 (IL-6), endothelin 1 (ET-1) and human monocyte chemoattractant protein 1 (MCP-1), resulting in F-actin recombination and vinculin aggregation as well as endothelial cell migration. In vitro studies have shown that leptin leads to increased WNT1 expression and the accumulation of β-catenin. Metastasis-associated protein 1 (MTA1), a critical upstream modifier of WNT1 signaling, increased the expression level in leptin-mediated regulation. In contrast, opposite results were observed when cells are transfected with MTA1 or WNT1 shRNA lentivirus vectors. Among 160 patients with CKD and 160 healthy subjects, patients with CKD had significantly higher serum leptin levels than those of the control group, which were positively correlated with increased levels of IL-6, ET-1 and MCP-1. However, these levels were negatively correlated with flow-mediated dilatation (FMD). Hence, these investigations provided novel information on the increased serum leptin levels in CKD patients leading to ED via the MTA1-WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Bing Liu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, 250021, Shandong, China
| | - Yanfang Zhao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiqi Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanmei Li
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Abstract
Chronic kidney diseases (CKD), a common outcome of various kidney diseases, cause a series of refractory complications, which lead to great economic burdens on patients. The clinical outcomes of CKD depend on various factors, including metabolic disorders. Leptin, a peptide hormone, produced in adipose tissues, plays an important role in regulating food consumption and energy expenditure. Leptin also influences the immune system and hematopoiesis. Increased leptin status is observed in CKD, leptin deficiency attenuates the immune response in nephritis. Conversely, leptin inhibits the development of obesity, which is closely associated glomerular disorder. Now, the precise role of leptin in CKD remains elusive. This review will give an integrated understanding of the potential role of leptin and its interactions with other signal molecules in CKD.
Collapse
Affiliation(s)
- Song Mao
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Li Fang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fen Liu
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Siqiong Jiang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Liangxia Wu
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jianhua Zhang
- b Department of Pediatrics, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
6
|
Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, Lindström K. Proximal Tubular Expression Patterns of Megalin and Cubilin in Proteinuric Nephropathies. Kidney Int Rep 2017; 2:721-732. [PMID: 29142988 PMCID: PMC5678615 DOI: 10.1016/j.ekir.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/10/2023] Open
Abstract
Introduction Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubules. For albumin this process involves at least 2 interacting receptors, megalin and cubilin. Albumin is not usually present in the urine, indicating a highly efficient tubular reuptake under physiological conditions. However, early appearance of albuminuria may mean that the tubular system is overwhelmed by large quantities of albumin or that the function is impaired. Methods To better understand the physiological role of megalin and cubilin in human renal disease, renal biopsies from 15 patients with a range of albuminuria and 3 healthy living donors were analyzed for proximal tubular expression of megalin and cubilin using immunohistochemistry (IHC) and semiquantitative immune-electron microscopy. Their expression in proteinuric zebrafish was also studied. Results Megalin and cubilin were expressed in brush border and cytoplasmic vesicles. Patients with microalbuminuric IgA nephropathy and thin membrane disease had significantly higher megalin in proximal tubules, whereas those with macro- or nephrotic-range albuminuria had unchanged levels. Cubilin expression was significantly higher in all patients. In a proteinuric zebrafish nphs2 knockdown model, we found a dose-dependent increase in the expression of tubular megalin and cubilin in response to tubular protein uptake. Discussion Megalin and cubilin show different expression patterns in different human diseases, which indicates that the 2 tubular proteins differently cooperate in cleaning up plasma proteins in kidney tubules.
Collapse
Affiliation(s)
- Jia Sun
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Axelsson
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden.,Department Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Nordström
- Division of Transplantation, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Transplant Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bing He
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lindström
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|