1
|
Jame-Chenarboo F, Reyes JN, Twells NM, Ng HH, Macdonald D, Hernando E, Mahal LK. Screening the human miRNA interactome reveals coordinated up-regulation in melanoma, adding bidirectional regulation to miRNA networks. SCIENCE ADVANCES 2025; 11:eadr0277. [PMID: 39792681 PMCID: PMC11721578 DOI: 10.1126/sciadv.adr0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation. Herein, we demonstrate coordinated up-regulation of functionally coupled proteins by miRNA. We focused on CD98hc, the heavy chain of the amino acid transporter LAT-1, and α-2,3-sialyltransferases ST3GAL1 and ST3GAL2, which are critical for CD98hc stability in melanoma. Profiling miRNA regulation using our high-throughput miRFluR assay, we identified miRNA that up-regulated the expression of both CD98hc and either ST3GAL1 or ST3GAL2. These co-up-regulating miRNAs were enriched in melanoma datasets associated with transformation and progression. Our findings add co-up-regulation by miRNA into miRNA regulatory networks and add a bidirectional twist to the impact miRNAs have on protein regulation and glycosylation.
Collapse
Affiliation(s)
| | - Joseph N. Reyes
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Si Y, Zhu J, Sayed H, Mayo KH, Zhou Y, Tai G, Su J. CD98hc, a novel of galectin-8 receptor, binds to galectin-8 in an N-glycosylation-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40205944 DOI: 10.3724/abbs.2024182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Glycan-mediated recognition plays a critical role in facilitating cell-cell and cell-matrix interactions. Galectin-8 (Gal-8), classified as a 'tandem-repeat' type of galectin, binds to cell surface glycans to modulate various cellular functions, including cell adhesion, migration, apoptosis, pathogen recognition, autophagy, and immunomodulation. Despite the known function of Gal-8 in binding to various glycosylated proteins, only a few interactions have been reported to date. In this study, mass spectrometry is used to identify CD98hc as a novel binding partner for Gal-8. Both the N-terminal and C-terminal carbohydrate recognition domains (CRDs) of Gal-8 (Gal-8N and Gal-8C) bind to CD98hc, an interaction that is specifically inhibited by lactose but not sucrose, as confirmed by pull-down assays. The binding affinity between CD98hc and Gal-8 measured by microscale thermophoresis (MST) is 1.51 ± 0.17 μM. In addition, Gal-8N and Gal-8C have the binding affinities of 0.22 ± 0.03 μM and 10.68 ± 1.69 μM, respectively. Gal-8N and Gal-8C are both involved in the recognition and binding process of CD98hc. Furthermore, both full-length Gal-8 and its individual CRDs bind specifically to N-glycosylated glycans on CD98hc, as demonstrated by the use of tunicamycin to inhibit N-glycosylation in cells. In addition, Gal-8 and its individual CRDs can pull down glycosylated CD98hc-ED but not free CD98hc-ED in vitro, indicating that the binding of Gal-8 to glycosylated CD98hc-ED is N-glycosylation-dependent. Overall, our findings establish CD98hc as a novel binding partner for Gal-8 and provide insights for further exploration of the diverse biological functions of Gal-8.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hend Sayed
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Xu Y, Weng W, Weng Y, Chen D, Zheng Z, Fan Z, Peng C, Xiong Y, Pang X, Cao G, Wang Y, Mo Q, Wang Z, Zhang S. Elevated SLC3A2 associated with poor prognosis and enhanced malignancy in gliomas. Sci Rep 2024; 14:15758. [PMID: 38977800 PMCID: PMC11231275 DOI: 10.1038/s41598-024-66484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The role of SLC3A2, a gene implicated in disulfidptosis, has not been characterized in gliomas. This study aims to clarify the prognostic value of SLC3A2 and its influence on glioma. We evaluated the expression of SLC3A2 and its prognostic importance in gliomas using publicly accessible databases and our clinical glioma samples and with reliance on Meta and Cox regression analysis approaches. Functional enrichment analyses were performed to explore SLC3A2's function. Immune infiltration was evaluated using CIBERSORT, ssGSEA, and single-cell sequencing data. Additionally, Tumor immune dysfunction and exclusion (TIDE) and epithelial-mesenchymal transition scores were determined. CCK8, colony formation, migration, and invasion assays were utilized in vitro, and an orthotopic glioma xenograft model was employed in vivo, to investigate the role of SLC3A2 in gliomas. Bioinformatics analyses indicated high SLC3A2 expression correlates with adverse clinicopathological features and poor patient prognosis. Upregulated SLC3A2 influenced the tumor microenvironment by altering immune cell infiltration, particularly of macrophages, and tumor migration and invasion. SLC3A2 expression positively correlated with immune therapy indicators, including immune checkpoints and TIDE. Elevated SLC3A2 was revealed as an independent risk element for poor glioma prognosis through Cox regression analyses. In vitro experiments showed that reduced SLC3A2 expression decreased cell proliferation, migration, and invasion. In vivo, knockdown of SLC3A2 led to a reduction in tumor volume and prolonged survival in tumor-bearing mice. Therefore, SLC3A2 is a prognostic biomarker and associated with immune infiltration in gliomas.
Collapse
Affiliation(s)
- Yuheng Xu
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Department of Anesthesiology, The Second Clinical College of Guangzhou Medical University, Guangzhou, 510182, China
| | - Wanqi Weng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Department of Anesthesiology, The Second Clinical College of Guangzhou Medical University, Guangzhou, 510182, China
| | - Yuhao Weng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ziwen Zheng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zexian Fan
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Department of Anesthesiology, The Second Clinical College of Guangzhou Medical University, Guangzhou, 510182, China
| | - Chengxiang Peng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuanyi Xiong
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guobin Cao
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Quan Mo
- Department of Neurosurgery, Huaiji County People's Hospital, Zhaoqing, 526400, China.
| | - Zhaotao Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Shizhen Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
4
|
Liu D, Ren H, Wen G, Xia P. Nicotine up-regulates SLC7A5 expression depending on TRIM29 in non-small cell lung cancer. Genes Dis 2024; 11:582-584. [PMID: 37692503 PMCID: PMC10491962 DOI: 10.1016/j.gendis.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 04/07/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Dahua Liu
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Haolin Ren
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Guimin Wen
- Department of Community Nursing, College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
5
|
Zhou XY, Li JY, Tan JT, HuangLi YL, Nie XC, Xia P. Clinical significance of the CD98hc-CD147 complex in ovarian cancer: a bioinformatics analysis. J OBSTET GYNAECOL 2023; 43:2188085. [PMID: 36930892 DOI: 10.1080/01443615.2023.2188085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Ovarian cancer is one of the most common malignant tumours affecting the female reproductive organs. CD147 (BSG) and CD98hc (SLC3A2) are oncogenes that form the CD98hc-CD147 complex, which regulates the proliferation, metastasis, metabolism, and cell cycle of cancer cells. The roles of the CD98hc-CD147 complex in ovarian cancer remain unclear. We analysed the expression and prognostic value of CD147 and CD98hc in ovarian cancer using the TCGA and ICGC databases. The effect of CD147 and CD98hc on the tumour immune response was analysed using the TIMER database. CD98hc was more highly expressed in normal tissues than primary tumour tissues, while CD147 was more highly expressed in primary tumour tissues than normal tissues. CD98hc expression was significantly associated with neutrophil and dendritic cell levels. CD147 and CD98hc were correlated with DNA repair, the cell cycle, and DNA replication. The CD98hc-CD147 complex could serve as a target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jin-Yao Li
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jing-Tong Tan
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yi-Li HuangLi
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xiao-Cui Nie
- Department of Gynaecology, Shenyang Women's and Children's Hospital, Shenyang, P.R. China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
6
|
Xia P, Liu DH, Wang D, Wen GM, Zhao ZY. SLC3A2, as an indirect target gene of ALDH2, exacerbates alcohol-associated liver cancer via the sphingolipid biosynthesis pathway. Free Radic Biol Med 2023; 206:125-133. [PMID: 37406742 DOI: 10.1016/j.freeradbiomed.2023.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Excessive drinking is one of the main causes of liver cancer. In the process of alcohol metabolism, aldehyde dehydrogenase 2 (ALDH2) is the key enzyme of acetaldehyde metabolism. ALDH2 gene deficiency is positively associated with the risk of hepatocellular carcinoma (HCC). However, no studies have shown a connection between ALDH2 and another metabolic regulatory gene, SLC3A2. In this study, we analyzed the expression levels of ALDH2 and SLC3A2 in liver cancer tissues based on the TCGA database. Subsequently, we constructed ALDH2 knockout and SLC3A2 knock-in transgenic mice to check the roles of ALDH2 and SLC3A2 in tumorigenesis in vivo. In addition, we examined the mechanisms of ALDH2 and SLC3A2 in HCC cells using small RNA interference technology. Consistent with previous studies, we also confirmed the functions of ALDH2 in inhibiting hepatocarcinogenesis, while SLC3A2 had the opposite effect. The main finding of this study is that ALDH2 inhibited BSG expression through the TGF-β1 pathway, which indirectly inhibited SLC3A2 expression; subsequently, the sphingolipid metabolism pathway was also inhibited in HCC cells. Therefore, SLC3A2 is a novel target for HCC treatment.
Collapse
Affiliation(s)
- Pu Xia
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, PR China; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Da-Hua Liu
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Dan Wang
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, PR China
| | - Gui-Min Wen
- Department of Community Nursing, College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Zhen-Ying Zhao
- Department of Pharmacy, Tianjin Union Medical Center, Tianjin, PR China
| |
Collapse
|
7
|
Liu D, An M, Wen G, Xing Y, Xia P. Both In Situ and Circulating SLC3A2 Could Be Used as Prognostic Markers for Human Lung Squamous Cell Carcinoma and Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14215191. [PMID: 36358610 PMCID: PMC9658420 DOI: 10.3390/cancers14215191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary With the continuous progress of diagnosis and treatment technology, the early diagnosis rate and survival rate of lung cancer have improved, but the incidence rate and mortality rate of lung cancer are still very high. Therefore, it has become an urgent problem to analyze the molecular mechanism of lung cancer and to determine the markers related to early diagnosis. SLC3A2 protein is a cell-surface marker that plays an important role in tumorigenesis and development, and it is expected to become a new target for the treatment of tumors. The in-depth study of SLC3A2 can provide a new molecular target for the early diagnosis, treatment, and prognosis of lung cancer. Abstract SLC3A2, the heavy chain of the CD98 protein, is highly expressed in many cancers, including lung cancer. It can regulate the proliferation and the metastasis of cancer cells via the integrin signaling pathway. Liquid biopsy is a novel method for tumor diagnosis. The diagnostic or prognostic roles of serum SLC3A2 in lung cancer are still not clear. In this study, we analyzed SLC3A2 mRNA levels in human lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) using the TCGA database and serum SLC3A2 protein levels using ELISA. We confirmed high SLC3A2 levels in both the serum and tissue of LUAD and LUSC patients. Both serum and tissue SLC3A2 could be used as prognostic markers for overall LUAD and subgroups of LUSC patients. SLC3A2 induced tumorigenesis via the MEK/ERK signaling pathway in LUAD and LUSC cells.
Collapse
Affiliation(s)
- Dahua Liu
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Min An
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001, China
| | - Guimin Wen
- Department of Basic Nursing, College of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yanan Xing
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
- Correspondence:
| |
Collapse
|
8
|
Wang X, Chen J, Liu XH, Zeng XY, Long QY, Liu YH, Mao Q. Evaluation of CD98 light chain-LAT1 as a potential marker of cancer stem-like cells in glioblastoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119303. [PMID: 35659617 DOI: 10.1016/j.bbamcr.2022.119303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Glioma stem cells (GSCs) are a minority population of glioma cells that regarded as the cause of tumor formation and recurrence. Identifying new molecular strategies targeting GSCs must be urgently developed to treat glioblastoma. In this study, one of CD98 light chain-L type amino acid transporter 1 (LAT1) was found as a potential GSC marker. LAT1 served as EAA transporter has been shown to be closely related with tumor invasion, metastasis, angiogenesis, and radiosensitivity. METHODS LAT1+ and LAT1- glioma cells were sorted by flow cytometry. Cellular immunofluorescence, sphere-formation arrays, and in vitro limiting dilution experiments were used to identify cell stemness. Differentiated glioma stem cells were cultured, and the expressions of β-tubulinIII, GFAP, and LAT1 were detected by Western blot. Nude mouse models were constructed to observe tumor formation and metastasis in nude mice. RESULTS LAT1+ glioma cells were testified a small percentage of all cells and selected as the subsequent sorting marker. LAT1+ cells were separated from U87 and U251 cells could express high level of stem cell markers, and possessed GSC properties including self-renewal ability and multi-directional differentiation potential. But LAT1- cells did not have these characteristics. In addition, LAT1+ cells were able to generate tumors in vivo, tumor size of LAT1+ cells formed were much bigger than that of LAT1- cells. CONCLUSION Our study, including molecular, cell, vitro and vivo experiments, has shown that LAT1+ cells possess GSC properties, and present for the first time that LAT1 can be used as a new marker for GSCs screening.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, China.
| | - Jinxiu Chen
- Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Sciences and Technology of China, China
| | - Xiang-Hao Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, China
| | - Xiang-Yi Zeng
- Department of Neurosurgery, West China Hospital of Sichuan University, China
| | - Qiang-You Long
- Department of Neurosurgery, West China Hospital of Sichuan University, China
| | - Yan-Hui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital of Sichuan University, China
| |
Collapse
|
9
|
Console L, Scalise M, Salerno S, Scanga R, Giudice D, De Bartolo L, Tonazzi A, Indiveri C. N-glycosylation is crucial for trafficking and stability of SLC3A2 (CD98). Sci Rep 2022; 12:14570. [PMID: 36028562 PMCID: PMC9418156 DOI: 10.1038/s41598-022-18779-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
The type II glycoprotein CD98 (SLC3A2) is a membrane protein with pleiotropic roles in cells, ranging from modulation of inflammatory processes, host–pathogen interactions to association with membrane transporters of the SLC7 family. The recent resolution of CD98 structure in complex with LAT1 showed that four Asn residues, N365, N381, N424, N506, harbour N-glycosylation moieties. Then, the role of N-glycosylation on CD98 trafficking and stability was investigated by combining bioinformatics, site-directed mutagenesis and cell biology approach. Single, double, triple and quadruple mutants of the four Asn exhibited altered electrophoretic mobility, with apparent molecular masses from 95 to 70 kDa. The quadruple mutant displayed a single band of 70 kDa corresponding to the unglycosylated protein. The presence in the membrane and the trafficking of CD98 were evaluated by a biotinylation assay and a brefeldin assay, respectively. Taken together, the results highlighted that the quadruple mutation severely impaired both the stability and the trafficking of CD98 to the plasma membrane. The decreased presence of CD98 at the plasma membrane, correlated with a lower presence of LAT1 (SLC7A5) and its transport activity. This finding opens new perspectives for human therapy. Indeed, the inhibition of CD98 trafficking would act synergistically with LAT1 inhibitors that are under clinical trial for anticancer therapy.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Simona Salerno
- CNR Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, cubo 17/C, 87036, Rende, Italy
| | - Raffaella Scanga
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Deborah Giudice
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Loredana De Bartolo
- CNR Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, cubo 17/C, 87036, Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy. .,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
10
|
Cheng W, Chen Y, Li S, Lee T, Lee T, Higa S, Chung C, Kao Y, Chen S, Chen Y. Galectin-3 enhances atrial remodelling and arrhythmogenesis through CD98 signalling. Acta Physiol (Oxf) 2022; 234:e13784. [PMID: 34995420 DOI: 10.1111/apha.13784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/09/2021] [Accepted: 01/02/2022] [Indexed: 12/18/2022]
Abstract
AIM Galectin-3 (Gal-3) is a biomarker of atrial fibrillation (AF) that mediates atrial inflammation. CD98 is the membrane surface receptor for Gal-3. Nevertheless, the role of the Gal-3/CD98 axis in atrial arrhythmogenesis is unclear. In this study, we investigated the effects of Gal-3/CD98 signalling on atrial pathogenesis. METHODS Whole cell patch clamp and western blotting were used to analyse calcium/potassium homeostasis and calcium-related signalling in Gal-3-administrated HL-1 atrial cardiomyocytes with/without CD98 neutralized antibodies. Telemetry electrocardiographic recording, Masson's trichrome staining and immunohistochemistry staining of atrium were obtained from mice having received tail-vein injections with Gal-3. RESULTS Gal-3-treated HL-1 myocytes had a shorter action potential duration, smaller L-type calcium current, increased sarcoplasmic reticulum (SR) calcium content, Na+ /Ca2+ exchanger (NCX) current, transient outward potassium current, and ultrarapid delayed rectifier potassium current than control cells had. Gal-3-treated HL-1 myocytes had greater levels of SR Ca2+ ATPase, NCX, Nav1.5, and NLR family pyrin domain containing 3 (NLRP3) expression and increased calcium/calmodulin-dependent protein kinase II (CaMKII), ryanodine receptor 2 (RyR2), and nuclear factor kappa B (NF-κB) phosphorylation than control cells had. Gal-3-mediated activation of CaMKII/RyR2 pathway was diminished in the cotreatment of anti-CD98 antibodies. Mice that were injected with Gal-3 had more atrial ectopic beats, increased atrial fibrosis, and activated NF-κB/NLRP3 signalling than did control mice (nonspecific immunoglobulin) or mice treated with Gal-3 and anti-CD98 antibodies. CONCLUSION Gal-3 recombinant protein administration increases atrial fibrosis and arrhythmogenesis through CD98 signalling. Targeting Gal-3/CD98 axis might be a novel therapeutic strategy for patients with AF and high Gal-3 levels.
Collapse
Affiliation(s)
- Wan‐Li Cheng
- Division of Cardiovascular Surgery Department of Surgery Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Surgery Department of Surgery School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research Center Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Yao‐Chang Chen
- Department of Biomedical Engineering National Defense Medical Center Taipei Taiwan
| | - Shao‐Jung Li
- Division of Cardiovascular Surgery Department of Surgery Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Surgery Department of Surgery School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research Center Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Ting‐I Lee
- Division of Endocrinology and Metabolism Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Division of Endocrinology and Metabolism Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Department of General Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Ting‐Wei Lee
- Division of Endocrinology and Metabolism Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Division of Endocrinology and Metabolism Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory Division of Cardiovascular Medicine Makiminato Central Hospital Urasoe Japan
| | - Cheng‐Chih Chung
- Division of Cardiology Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Medicine Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Yu‐Hsun Kao
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Department of Medical Education and Research Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Shih‐Ann Chen
- Heart Rhythm Center Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
- Cardiovascular Center Taichung Veterans General Hospital Taichung Taiwan
| | - Yi‐Jen Chen
- Cardiovascular Research Center Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Medicine Department of Internal Medicine Wan Fang Hospital Taipei Medical University Taipei Taiwan
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
| |
Collapse
|
11
|
Canup BSB, Song H, Laroui H. Role of CD98 in liver disease. Ann Hepatol 2021; 19:602-607. [PMID: 32057700 DOI: 10.1016/j.aohep.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
CD98 is a multifunctional glycoprotein that is involved in various biological processes such as amino acid transport, cell adhesion, diffusion, adhesion, and proliferation. The role of CD98 in liver disease has not thoroughly been examined and is limited reports in the literature. Among these reports, direct association for CD98 in nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) have been reported. Our lab has reported that targeting CD98 in high fat diet mice reduced steatosis and inflammation in NAFLD. Other reports associate CD98 in HCC due in part to the role of CD98 in activating integrin signaling. Herein, we present CD98 staining on liver biopsies from NAFLD, chronic active hepatitis, cirrhosis, and 3 stages of HCC to demonstrate the upregulation of CD98 expression throughout liver disease progression. In addition, we analyze current literature to elucidate roles and potential roles of CD98 with each stage of liver disease.
Collapse
Affiliation(s)
- Brandon S B Canup
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA
| | - Heliang Song
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA
| | - Hamed Laroui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA.
| |
Collapse
|
12
|
Kim JO, Kim KH, Baek EJ, Park B, So MK, Ko BJ, Ko HJ, Park SG. A novel anti-c-Kit antibody-drug conjugate to treat wild-type and activating-mutant c-Kit-positive tumors. Mol Oncol 2021; 16:1290-1308. [PMID: 34407310 PMCID: PMC8936518 DOI: 10.1002/1878-0261.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
c‐Kit overexpression and activating mutations, which are reported in various cancers, including gastrointestinal stromal tumor (GIST), small‐cell lung cancer (SCLC), acute myeloid leukemia, acral melanoma, and systemic mastocytosis (SM), confer resistance to tyrosine kinase inhibitors (TKIs). To overcome TKI resistance, an anti‐c‐Kit antibody–drug conjugate was developed in this study to treat wild‐type and mutant c‐Kit‐positive cancers. NN2101, a fully human IgG1, was conjugated to DM1, a microtubule inhibitor, through N‐succinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐carboxylate (SMCC) (to give NN2101‐DM1). The antitumor activity of NN2101‐DM1 was evaluated in vitro and in vivo using various cancer cell lines. NN2101‐DM1 exhibited potent growth‐inhibitory activities against c‐Kit‐positive cancer cell lines. In a mouse xenograft model, NN2101‐DM1 exhibited potent growth‐inhibitory activities against imatinib‐resistant GIST and SM cells. In addition, NN2101‐DM1 exhibited a significantly higher anti‐cancer effect than carboplatin/etoposide against SCLC cells where c‐Kit does not mediate cancer pathogenesis. Furthermore, the combination of NN2101‐DM1 with imatinib in imatinib‐sensitive GIST cells induced complete remission compared with treatment with NN2101‐DM1 or imatinib alone in mouse xenograft models. These results suggest that NN2101‐DM1 is a potential therapeutic agent for wild‐type and mutant c‐Kit‐positive cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | | | - Eun Ji Baek
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | - Bomi Park
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | - Min Kyung So
- New Drug Development Center, Osong Medical Innovation Foundation, Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medicinal Sciences, Sungshin Women's University, Seoul, Korea
| | | | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon-si, Korea.,Novelty Nobility, Seongnam-si, Korea
| |
Collapse
|
13
|
Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun 2021; 12:4389. [PMID: 34282141 PMCID: PMC8289845 DOI: 10.1038/s41467-021-24384-2] [Citation(s) in RCA: 466] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type. Extracellular vesicles (EVs) play a role in intercellular communication, however the precise biogenesis of different populations of EVs are not clear. Here, the authors follow the intracellular trafficking of two proteins before their secretion in EVs and report the biogenesis and protein markers of EV subtypes: ectosomes budding from the plasma membrane as well as exosomes from late endosomes.
Collapse
|
14
|
He Y, Du J, Dong Z. Myeloid deletion of phosphoinositide-dependent kinase-1 enhances NK cell-mediated antitumor immunity by mediating macrophage polarization. Oncoimmunology 2020; 9:1774281. [PMID: 32923133 PMCID: PMC7458637 DOI: 10.1080/2162402x.2020.1774281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A large number of heterogeneous macrophages can be observed in solid tumor lesions. Classically activated M1 macrophages are a powerful killer of cancer cells. In contrast, tumor-associated macrophages (TAMs) are often referred to as M2 phenotype and usually impair tumor immunity mediated by cytotoxic lymphocytes, natural killer (NK) cells and CD8+ T cells. Therefore, orchestrating M2 to M1 reprogramming will provide a promising approach to tumor immunotherapy. Here we used a PyMT-induced spontaneous breast cancer model in which M2-polarized macrophages were abundant. This M2 phenotype was closely related to tumor progression and immune dysfunction of NK cells and CD8+ T cells. We then found that these TAMs showed increased energy expenditure and over-activation of two kinases, Akt and mammalian target of rapamycin (mTOR). Myeloid inactivation of phosphoinositide-dependent kinase-1 (PDK1), the upstream regulator for Akt and mTOR signaling, significantly reduced excessive metabolic activation of macrophages. Notably, the loss of PDK1 significantly led to regression of breast cancer and prevented lung metastasis. Mechanistically, PDK1 deficiency mainly inhibited the activation of mTOR complex 1 (mTORC1), transforming TAMs into M1 phenotype, thereby reversing tumor-related dysfunction of T cells and NK cells. Therefore, targeting PDK1 may be a new approach for M2 macrophage-enriched solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yuexi He
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Digomann D, Kurth I, Tyutyunnykova A, Chen O, Löck S, Gorodetska I, Peitzsch C, Skvortsova II, Negro G, Aschenbrenner B, Eisenhofer G, Richter S, Heiden S, Porrmann J, Klink B, Schwager C, Dowle AA, Hein L, Kunz-Schughart LA, Abdollahi A, Lohaus F, Krause M, Baumann M, Linge A, Dubrovska A. The CD98 Heavy Chain Is a Marker and Regulator of Head and Neck Squamous Cell Carcinoma Radiosensitivity. Clin Cancer Res 2019; 25:3152-3163. [PMID: 30670494 DOI: 10.1158/1078-0432.ccr-18-2951] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The heavy chain of the CD98 protein (CD98hc) is encoded by the SLC3A2 gene. Together with the light subunit LAT1, CD98hc constitutes a heterodimeric transmembrane amino acid transporter. High SLC3A2 mRNA expression levels are associated with poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC) treated with radiochemotherapy. Little is known regarding the CD98hc protein-mediated molecular mechanisms of tumor radioresistance. EXPERIMENTAL DESIGN CD98hc protein expression levels were correlated with corresponding tumor control dose 50 (TCD50) in HNSCC xenograft models. Expression levels of CD98hc and LAT1 in HNSCC cells were modulated by siRNA or CRISPR/Cas9 gene editing. HNSCC cell phenotypes were characterized by transcription profiling, plasma membrane proteomics, metabolic analysis, and signaling pathway activation. Expression levels of CD98hc and LAT1 proteins were examined by IHC analysis of tumor tissues from patients with locally advanced HNSCC treated with primary radiochemotherapy (RCTx). Primary endpoint was locoregional tumor control (LRC). RESULTS High expression levels of CD98hc resulted in an increase in mTOR pathway activation, amino acid metabolism, and DNA repair as well as downregulation of oxidative stress and autophagy. High expression levels of CD98hc and LAT1 proteins were significantly correlated and associated with an increase in radioresistance in HNSCC in vitro and in vivo models. High expression of both proteins identified a poor prognosis subgroup in patients with locally advanced HNSCC after RCTx. CONCLUSIONS We found that CD98hc-associated signaling mechanisms play a central role in the regulation of HNSCC radioresistance and may be a promising target for tumor radiosensitization.
Collapse
Affiliation(s)
- David Digomann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Ina Kurth
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Tyutyunnykova
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Oleg Chen
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ira-Ida Skvortsova
- EXTRO-Lab, Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Giulia Negro
- EXTRO-Lab, Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Bertram Aschenbrenner
- EXTRO-Lab, Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Graeme Eisenhofer
- Department of Medicine III, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susan Richter
- Department of Medicine III, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Heiden
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joseph Porrmann
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Barbara Klink
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Laboratoire National de Santé, National Center of Genetics, Dudelange, Luxembourg, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Linda Hein
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Centre (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Fabian Lohaus
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| |
Collapse
|
16
|
Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation. Sci Rep 2018; 8:15486. [PMID: 30341327 PMCID: PMC6195511 DOI: 10.1038/s41598-018-33861-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) exploits an extensive network of host proteins to maintain chronic infection. Using RNA-Seq technology, we identified 30 host genes that were differentially expressed in cell culture grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected solute carrier family 3 member 2 (SLC3A2) for further investigation. SLC3A2, also known as CD98hc, is a member of the solute carrier family and encodes a subunit of heterodimeric amino acid transporter. SLC3A2 and LAT1 constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. In this study, we showed that HCV upregulated both mRNA and protein expression levels of SLC3A2 and this upregulation occurred through NS3/4A-mediated oxidative stress. HCV also elevated SLC3A2/LAT1 complex level and thus mammalian target of rapamycin complex 1 (mTORC1) signaling was activated. We further showed that L-leucine transport level was significantly increased in Jc1-infected cells as compared with mock-infected cells. Using RNA interference technology, we demonstrated that SLC3A2 was specifically required for the entry step but not for other stages of the HCV life cycle. These data suggest that SLC3A2 plays an important role in regulating HCV entry. Collectively, HCV exploits SLC3A2 for viral propagation and upregulation of SLC3A2 may contribute to HCV-mediated pathogenesis.
Collapse
|
17
|
Sabharwal SS, Rosen DB, Grein J, Tedesco D, Joyce-Shaikh B, Ueda R, Semana M, Bauer M, Bang K, Stevenson C, Cua DJ, Zúñiga LA. GITR Agonism Enhances Cellular Metabolism to Support CD8+ T-cell Proliferation and Effector Cytokine Production in a Mouse Tumor Model. Cancer Immunol Res 2018; 6:1199-1211. [DOI: 10.1158/2326-6066.cir-17-0632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
|
18
|
Salisbury TB, Arthur S. The Regulation and Function of the L-Type Amino Acid Transporter 1 (LAT1) in Cancer. Int J Mol Sci 2018; 19:ijms19082373. [PMID: 30103560 PMCID: PMC6121554 DOI: 10.3390/ijms19082373] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer is associated with increases in amino acid uptake by cancer cells. Upon their entry into cells through specific transporters, exogenous amino acids are used to synthesize proteins, nucleic acids and lipids and to generate ATP. The essential amino acid leucine is also important for maintaining cancer-associated signaling pathways. By upregulating amino acid transporters, cancer cells gain greater access to exogenous amino acids to support chronic proliferation, maintain metabolic pathways, and to enhance certain signal transduction pathways. Suppressing cancer growth by targeting amino acid transporters will require an in-depth understanding of how cancer cells acquire amino acids, in particular, the transporters involved and which cancer pathways are most sensitive to amino acid deprivation. L-Type Amino Acid Transporter 1 (LAT1) mediates the uptake of essential amino acids and its expression is upregulated during the progression of several cancers. We will review the upstream regulators of LAT1 and the downstream effects caused by the overexpression of LAT1 in cancer cells.
Collapse
Affiliation(s)
- Travis B Salisbury
- Departments of Biomedical Sciences and Clinical & Translational Science, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Subha Arthur
- Departments of Biomedical Sciences and Clinical & Translational Science, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
19
|
Dai Y, Liu H, Liu Y, Zhang Y, He W. EBV transformation induces overexpression of hMSH2/3/6 on B lymphocytes and enhances γδT-cell-mediated cytotoxicity via TCR and NKG2D. Immunology 2018; 154:673-682. [PMID: 29512904 PMCID: PMC6050216 DOI: 10.1111/imm.12920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
The engagement of Epstein-Barr virus (EBV)-induced protein ligands in γδ T-cell-mediated anti-EBV immunity, especially in EBV-associated B-cell malignancies, has not been fully elucidated. Previously we reported the overexpression of human MutS homologue 2 (hMSH2), a stress-inducible protein ligand for human γδ T-cells, on EBV-transformed B lymphoblastic cell lines (B-LCLs). In this study, we first generated EBV-transformed B-LCLs from peripheral blood mononuclear cells of healthy volunteers with B95-8 cellular supernatant and cyclosporine A. Secondly, we demonstrated the significantly elevated cell surface protein expression and mRNA transcription of hMSH2 in EBV-transformed B-LCLs, 3D5 and EBV-positive B lymphoma cell line Daudi and Raji. Thirdly, hMSH2-mediated recognition of EBV-transformed B malignant cells by human γδ T-cells was confirmed by specific antibody blocking and siRNA interference. Both TCRγδ and NKG2D participated in hMSH2-mediated recognition of EBV-transformed B malignant cells. Furthermore, hMSH3 and hMSH6, the companion proteins of hMSH2, along with CD98, were found overexpressed on the surface of EBV-transformed malignant B-cells. We concluded that the induced overexpression of hMSH proteins might serve as early alerting biomarkers emerged in EBV-related B-cell malignances or as potential targets for establishing γδ T-cell-based therapeutic immunotherapies towards EBV infection.
Collapse
Affiliation(s)
- Yu‐mei Dai
- Department of Clinical Laboratory MedicineGuangzhou Women and Children's Medical CentreGuangzhou Medical UniversityGuangzhouChina
| | - Hai‐ying Liu
- Department of Clinical Laboratory MedicineGuangzhou Women and Children's Medical CentreGuangzhou Medical UniversityGuangzhouChina
| | - Yun‐feng Liu
- Department of Clinical Laboratory MedicineGuangzhou Women and Children's Medical CentreGuangzhou Medical UniversityGuangzhouChina
| | - Yuan Zhang
- Department of Clinical Laboratory MedicineGuangzhou Women and Children's Medical CentreGuangzhou Medical UniversityGuangzhouChina
| | - Wei He
- Department of ImmunologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and School of Peking Union Medical CollegeBeijingChina
- The National Key Laboratory of Medical Molecular BiologyBeijingChina
| |
Collapse
|