1
|
Orlandi P, Banchi M, Vaglini F, Carli M, Aringhieri S, Bandini A, Pardini C, Viaggi C, Lai M, Alì G, Ottani A, Vandini E, Guidi P, Bernardeschi M, La Rocca V, Francia G, Fontanini G, Pistello M, Frenzilli G, Giuliani D, Scarselli M, Bocci G. Melanocortin receptor 4 as a new target in melanoma therapy: Anticancer activity of the inhibitor ML00253764 alone and in association with B-raf inhibitor vemurafenib. Biochem Pharmacol 2024; 219:115952. [PMID: 38036189 DOI: 10.1016/j.bcp.2023.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Francesca Vaglini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Marco Carli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Stefano Aringhieri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Arianna Bandini
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Carla Pardini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Cristina Viaggi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Michele Lai
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Alessandra Ottani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Patrizia Guidi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | | | - Veronica La Rocca
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Giada Frenzilli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Daniela Giuliani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Marco Scarselli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Ibhagui O, Li D, Han H, Peng G, Meister ML, Gui Z, Qiao J, Salarian M, Dong B, Yuan Y, Xu Y, Yang H, Tan S, Satyanarayana G, Xue S, Turaga RC, Sharma M, Hai Y, Meng Y, Hekmatyar K, Sun P, Sica G, Ji X, Liu ZR, Yang JJ. Early Detection and Staging of Lung Fibrosis Enabled by Collagen-Targeted MRI Protein Contrast Agent. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:268-285. [PMID: 37388961 PMCID: PMC10302889 DOI: 10.1021/cbmi.3c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023]
Abstract
Chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), are major leading causes of death worldwide and are generally associated with poor prognoses. The heterogeneous distribution of collagen, mainly type I collagen associated with excessive collagen deposition, plays a pivotal role in the progressive remodeling of the lung parenchyma to chronic exertional dyspnea for both IPF and COPD. To address the pressing need for noninvasive early diagnosis and drug treatment monitoring of pulmonary fibrosis, we report the development of human collagen-targeted protein MRI contrast agent (hProCA32.collagen) to specifically bind to collagen I overexpressed in multiple lung diseases. When compared to clinically approved Gd3+ contrast agents, hProCA32.collagen exhibits significantly better r1 and r2 relaxivity values, strong metal binding affinity and selectivity, and transmetalation resistance. Here, we report the robust detection of early and late-stage lung fibrosis with stage-dependent MRI signal-to-noise ratio (SNR) increase, with good sensitivity and specificity, using a progressive bleomycin-induced IPF mouse model. Spatial heterogeneous mapping of usual interstitial pneumonia (UIP) patterns with key features closely mimicking human IPF, including cystic clustering, honeycombing, and traction bronchiectasis, were noninvasively detected by multiple MR imaging techniques and verified by histological correlation. We further report the detection of fibrosis in the lung airway of an electronic cigarette-induced COPD mouse model, using hProCA32.collagen-enabled precision MRI (pMRI), and validated by histological analysis. The developed hProCA32.collagen is expected to have strong translational potential for the noninvasive detection and staging of lung diseases, and facilitating effective treatment to halt further chronic lung disease progression.
Collapse
Affiliation(s)
- Oluwatosin
Y. Ibhagui
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dongjun Li
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hongwei Han
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Guangda Peng
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Maureen L. Meister
- Department
of Nutrition, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zongxiang Gui
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingjuan Qiao
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| | - Mani Salarian
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bin Dong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yi Yuan
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yiting Xu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hua Yang
- Department
of Ophthalmology, Emory University, Atlanta, Georgia 30322, United States
| | - Shanshan Tan
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ganesh Satyanarayana
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shenghui Xue
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| | - Ravi Chakra Turaga
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Malvika Sharma
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yan Hai
- Department
of Statistics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuguang Meng
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- Emory
National Primate Research Center, Emory
University, Atlanta, Georgia 30329, United States
| | - Khan Hekmatyar
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
| | - Phillip Sun
- Emory
National Primate Research Center, Emory
University, Atlanta, Georgia 30329, United States
| | - Gabriel Sica
- Winship
Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Xiangming Ji
- Department
of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhi-ren Liu
- Department
of Nutrition, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jenny J. Yang
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational
Imaging Facility, Georgia State University, Atlanta, Georgia 30303, United States
- InLighta
Biosciences, Atlanta, Georgia 30303, United States
| |
Collapse
|
3
|
Thong L, McElduff EJ, Henry MT. Trials and Treatments: An Update on Pharmacotherapy for Idiopathic Pulmonary Fibrosis. Life (Basel) 2023; 13:486. [PMID: 36836843 PMCID: PMC9963632 DOI: 10.3390/life13020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial lung disease that occurs predominantly in the older population. There is increasing incidence and prevalence in IPF globally. The emergence of anti-fibrotic therapies in the last decade have improved patient survival though a cure is yet to be developed. In this review article, we aim to summarize the existing and novel pharmacotherapies for the treatment of IPF (excluding treatments for acute exacerbations), focusing on the current knowledge on the pathophysiology of the disease, mechanism of action of the drugs, and clinical trials.
Collapse
Affiliation(s)
- Lorraine Thong
- Department of Clinical Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Enda James McElduff
- Department of Clinical Medicine, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| | - Michael Thomas Henry
- Department of Respiratory Medicine, Cork University Hospital, T12 YE02 Cork, Ireland
| |
Collapse
|
4
|
Norman O, Koivunen J, Mäki JM, Pihlajaniemi T, Heikkinen A. Identification of suitable reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) in the fibrotic phase of the bleomycin mouse model of pulmonary fibrosis. PLoS One 2022; 17:e0276215. [PMID: 36251700 PMCID: PMC9576074 DOI: 10.1371/journal.pone.0276215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe lung disease with a poor prognosis and few treatment options. In the most widely used experimental model for this disease, bleomycin is administered into the lungs of mice, causing a reaction of inflammation and consequent fibrosis that resembles the progression of human IPF. The inflammation and fibrosis together induce changes in gene expression that can be analyzed with reverse transcription quantitative real-time PCR (RT-qPCR), in which accurate normalization with a set of stably expressed reference genes is critical for obtaining reliable results. This work compares ten commonly used candidate reference genes in the late, fibrotic phase of bleomycin-induced pulmonary fibrosis and ranks them from the most to the least stable using NormFinder and geNorm. Sdha, Polr2a and Hprt were identified as the best performing and least variable reference genes when alternating between normal and fibrotic conditions. In order to validate the findings, we investigated the expression of Tnf and Col1a1, representing the hallmarks of inflammation and fibrotic changes, respectively. With the best three genes as references, both were found to be upregulated relative to untreated controls, unlike the situation when analyzed solely with Gapdh, a commonly used reference gene. We therefore recommend Sdha, Polr2a and Hprt as reference genes for RT-qPCR in the 4-week bleomycin challenge that represents the late fibrotic phase.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M. Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
5
|
Wang X, Yang J, Wu L, Tong C, Zhu Y, Cai W, Wan B, Zhang X. Adiponectin inhibits the activation of lung fibroblasts and pulmonary fibrosis by regulating the nuclear factor kappa B (NF-κB) pathway. Bioengineered 2022; 13:10098-10110. [PMID: 35435119 PMCID: PMC9162013 DOI: 10.1080/21655979.2022.2063652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common pulmonary interstitial disease with a high mortality rate. Adiponectin (APN) is reportedly an effective therapy for fibrosis-related diseases. This study aimed to investigate the potential effects of APN on IPF. Male BALB/c mice were injected with bleomycin (BLM) and treated with different doses of APN (0.1, 0.25, and 0.5 mg/kg). The body weights of the mice were recorded. Immunohistochemical, hematoxylin and eosin, and Masson staining were performed to evaluate pulmonary histopathological changes. Enzyme-linked immunosorbent assay (ELISA) and western blotting were performed to assess tissue inflammation. The human lung fibroblasts HELF were stimulated with TGF-β1 and treated with different doses of APN (2.5, 5, and 10 μg/ml). Cell proliferation, inflammation, and fibrosis were determined by MTT assay, EdU assay, colony formation assay, ELISA, and western blotting. APN significantly attenuated BLM-induced body weight loss, alveolar destruction, and collagen fiber accumulation in mice (p < 0.05). APN decreased the expression of α-SMA and collagen I and reduced the concentration of TNF-α, IL-6, IL-1β, and IL-18 in lung tissues (p < 0.05). In TGF-β1-treated HELF cells, cell proliferation and colony formation were inhibited by APN (p < 0.05). Additionally, the expression of α-SMA, collagen I, and pro-inflammatory cytokines were suppressed by APN (p < 0.05). APN inhibited the phosphorylation of IκB and nuclear translocation of p65. In conclusion, these findings suggest that APN is an effective agent for controlling IPF progression. The antifibrotic effects of APN might be mediated via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Chunran Tong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ying Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei Cai
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | | | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
6
|
Qiao D, Skibba M, Xu X, Garofalo RP, Zhao Y, Brasier AR. Paramyxovirus replication induces the hexosamine biosynthetic pathway and mesenchymal transition via the IRE1α-XBP1s arm of the unfolded protein response. Am J Physiol Lung Cell Mol Physiol 2021; 321:L576-L594. [PMID: 34318710 PMCID: PMC8461800 DOI: 10.1152/ajplung.00127.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The paramyxoviridae, respiratory syncytial virus (RSV), and murine respirovirus are enveloped, negative-sense RNA viruses that are the etiological agents of vertebrate lower respiratory tract infections (LRTIs). We observed that RSV infection in human small airway epithelial cells induced accumulation of glycosylated proteins within the endoplasmic reticulum (ER), increased glutamine-fructose-6-phosphate transaminases (GFPT1/2) and accumulation of uridine diphosphate (UDP)-N-acetylglucosamine, indicating activation of the hexosamine biosynthetic pathway (HBP). RSV infection induces rapid formation of spliced X-box binding protein 1 (XBP1s) and processing of activating transcription factor 6 (ATF6). Using pathway selective inhibitors and shRNA silencing, we find that the inositol-requiring enzyme (IRE1α)-XBP1 arm of the unfolded protein response (UPR) is required not only for activation of the HBP, but also for expression of mesenchymal transition (EMT) through the Snail family transcriptional repressor 1 (SNAI1), extracellular matrix (ECM)-remodeling proteins fibronectin (FN1), and matrix metalloproteinase 9 (MMP9). Probing RSV-induced open chromatin domains by ChIP, we find XBP1 binds and recruits RNA polymerase II to the IL6, SNAI1, and MMP9 promoters and the intragenic superenhancer of glutamine-fructose-6-phosphate transaminase 2 (GFPT2). The UPR is sustained through RSV by an autoregulatory loop where XBP1 enhances Pol II binding to its own promoter. Similarly, we investigated the effects of murine respirovirus infection on its natural host (mouse). Murine respirovirus induces mucosal growth factor response, EMT, and the indicators of ECM remodeling in an IRE1α-dependent manner, which persists after viral clearance. These data suggest that IRE1α-XBP1s arm of the UPR pathway is responsible for paramyxovirus-induced metabolic adaptation and mucosal remodeling via EMT and ECM secretion.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Melissa Skibba
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaofang Xu
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.,Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
7
|
Fragoulis A, Biller K, Fragoulis S, Lex D, Uhlig S, Reiss LK. Reference Gene Selection for Gene Expression Analyses in Mouse Models of Acute Lung Injury. Int J Mol Sci 2021; 22:ijms22157853. [PMID: 34360619 PMCID: PMC8346155 DOI: 10.3390/ijms22157853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
qRT-PCR still remains the most widely used method for quantifying gene expression levels, although newer technologies such as next generation sequencing are becoming increasingly popular. A critical, yet often underappreciated, problem when analysing qRT-PCR data is the selection of suitable reference genes. This problem is compounded in situations where up to 25% of all genes may change (e.g., due to leukocyte invasion), as is typically the case in ARDS. Here, we examined 11 widely used reference genes for their suitability in commonly used models of acute lung injury (ALI): ventilator-induced lung injury (VILI), in vivo and ex vivo, lipopolysaccharide plus mechanical ventilation (MV), and hydrochloric acid plus MV. The stability of reference gene expression was determined using the NormFinder, BestKeeper, and geNorm algorithms. We then proceeded with the geNorm results because this is the only algorithm that provides the number of reference genes required to achieve normalisation. We chose interleukin-6 (Il-6) and C-X-C motif ligand 1 (Cxcl-1) as the genes of interest to analyse and demonstrate the impact of inappropriate normalisation. Reference gene stability differed between the ALI models and even within the subgroup of VILI models, no common reference gene index (RGI) could be determined. NormFinder, BestKeeper, and geNorm produced slightly different, but comparable results. Inappropriate normalisation of Il-6 and Cxcl1 gene expression resulted in significant misinterpretation in all four ALI settings. In conclusion, choosing an inappropriate normalisation strategy can introduce different kinds of bias such as gain or loss as well as under- or overestimation of effects, affecting the interpretation of gene expression data.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany;
| | - Kristina Biller
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Stephanie Fragoulis
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Dennis Lex
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Stefan Uhlig
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
| | - Lucy Kathleen Reiss
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, 52074 Aachen, Germany; (K.B.); (S.F.); (D.L.); (S.U.)
- Correspondence:
| |
Collapse
|
8
|
Doni A, Mantovani A, Bottazzi B, Russo RC. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:676702. [PMID: 34276664 PMCID: PMC8284251 DOI: 10.3389/fimmu.2021.676702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient's life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Alberto Mantovani
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University of Milan, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Baluk P, Naikawadi RP, Kim S, Rodriguez F, Choi D, Hong YK, Wolters PJ, McDonald DM. Lymphatic Proliferation Ameliorates Pulmonary Fibrosis after Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2355-2375. [PMID: 33039355 DOI: 10.1016/j.ajpath.2020.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Despite many reports about pulmonary blood vessels in lung fibrosis, the contribution of lymphatics to fibrosis is unknown. We examined the mechanism and consequences of lymphatic remodeling in mice with lung fibrosis after bleomycin injury or telomere dysfunction. Widespread lymphangiogenesis was observed after bleomycin treatment and in fibrotic lungs of prospero homeobox 1-enhanced green fluorescent protein (Prox1-EGFP) transgenic mice with telomere dysfunction. In loss-of-function studies, blocking antibodies revealed that lymphangiogenesis 14 days after bleomycin treatment was dependent on vascular endothelial growth factor (Vegf) receptor 3 signaling, but not on Vegf receptor 2. Vegfc gene and protein expression increased specifically. Extensive extravasated plasma, platelets, and macrophages at sites of lymphatic growth were potential sources of Vegfc. Lymphangiogenesis peaked at 14 to 28 days after bleomycin challenge, was accompanied by doubling of chemokine (C-C motif) ligand 21 in lung lymphatics and tertiary lymphoid organ formation, and then decreased as lung injury resolved by 56 days. In gain-of-function studies, expansion of the lung lymphatic network by transgenic overexpression of Vegfc in club cell secretory protein (CCSP)/VEGF-C mice reduced macrophage accumulation and fibrosis and accelerated recovery after bleomycin treatment. These findings suggest that lymphatics have an overall protective effect in lung injury and fibrosis and fit with a mechanism whereby lung lymphatic network expansion reduces lymph stasis and increases clearance of fluid and cells, including profibrotic macrophages.
Collapse
Affiliation(s)
- Peter Baluk
- Department of Anatomy, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | - Ram P Naikawadi
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shineui Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Felipe Rodriguez
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Dongwon Choi
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Donald M McDonald
- Department of Anatomy, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|