1
|
Yonekura H, Kato I, Yamamoto Y, Ikeda T, Higashida H, Okamoto H. Biosynthesis and Function of VIP and Oxytocin: Mechanisms of C-terminal Amidation, Oxytocin Secretion and Transport. Endocrinology 2023; 164:bqad121. [PMID: 37548257 DOI: 10.1210/endocr/bqad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
In this review, we provide the status of research on vasoactive intestinal peptide (VIP) and oxytocin, typical C-terminal α-amidated peptide hormones, including their precursor protein structures, processing and C-terminal α-amidation, and the recently identified mechanisms of regulation of oxytocin secretion and its transportation through the blood brain barrier. More than half of neural and endocrine peptides, such as VIP and oxytocin, have the α-amide structure at their C-terminus, which is essential for biological activities. We have studied the synthesis and function of C-terminal α-amidated peptides, including VIP and oxytocin, since the 1980s. Human VIP mRNA encoded not only VIP but also another related C-terminal α-amidated peptide, PHM-27 (peptide having amino-terminal histidine, carboxy-terminal methionine amide, and 27 amino acid residues). The human VIP/PHM-27 gene is composed of 7 exons and regulated synergistically by cyclic AMP and protein kinase C pathways. VIP has an essential role in glycemic control using transgenic mouse technology. The peptide C-terminal α-amidation proceeded through a 2-step mechanism catalyzed by 2 different enzymes encoded in a single mRNA. In the oxytocin secretion from the hypothalamus/the posterior pituitary, the CD38-cyclic ADP-ribose signal system, which was first established in the insulin secretion from pancreatic β cells of the islets of Langerhans, was found to be essential. A possible mechanism involving RAGE (receptor for advanced glycation end-products) of the oxytocin transportation from the blood stream into the brain through the blood-brain barrier has also been suggested.
Collapse
Affiliation(s)
- Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ichiro Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
2
|
CD38–Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and Pathophysiology. Int J Mol Sci 2022; 23:ijms23084306. [PMID: 35457121 PMCID: PMC9033130 DOI: 10.3390/ijms23084306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca2+) is a ubiquitous and fundamental signaling component that is utilized by cells to regulate a diverse range of cellular functions, such as insulin secretion from pancreatic β-cells of the islets of Langerhans. Cyclic ADP-ribose (cADPR), synthesized from NAD+ by ADP-ribosyl cyclase family proteins, such as the mammalian cluster of differentiation 38 (CD38), is important for intracellular Ca2+ mobilization for cell functioning. cADPR induces Ca2+ release from endoplasmic reticulum via the ryanodine receptor intracellular Ca2+ channel complex, in which the FK506-binding protein 12.6 works as a cADPR-binding regulatory protein. Recently, involvements of the CD38-cADPR signal system in several human diseases and animal models have been reported. This review describes the biochemical and molecular biological basis of the CD38-cADPR signal system and the diseases caused by its abnormalities.
Collapse
|
3
|
Roboon J, Hattori T, Ishii H, Takarada-Iemata M, Nguyen DT, Heer CD, O'Meally D, Brenner C, Yamamoto Y, Okamoto H, Higashida H, Hori O. Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD . J Neurochem 2021; 158:311-327. [PMID: 33871064 DOI: 10.1111/jnc.15367] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Collin D Heer
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, USA
| | - Denis O'Meally
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
5
|
Deletion of CD38 and supplementation of NAD+ attenuate axon degeneration in a mouse facial nerve axotomy model. Sci Rep 2020. [DOI: 10.1006/jfan.1996.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AbstractFollowing facial nerve axotomy, nerve function is not fully restored even after reconstruction. This may be attributed to axon degeneration/neuronal death and sustained neuroinflammation. CD38 is an enzyme that catalyses the hydrolysis of nicotinamide adenine dinucleotide (NAD+) and is a candidate molecule for regulating neurodegeneration and neuroinflammation. In this study, we analyzed the effect of CD38 deletion and NAD+ supplementation on neuronal death and glial activation in the facial nucleus in the brain stem, and on axon degeneration and immune cell infiltration in the distal portion of the facial nerve after axotomy in mice. Compared with wild-type mice, CD38 knockout (KO) mice showed reduced microglial activation in the facial nucleus, whereas the levels of neuronal death were not significantly different. In contrast, the axon degeneration and demyelination were delayed, and macrophage accumulation was reduced in the facial nerve of CD38 KO mice after axotomy. Supplementation of NAD+ with nicotinamide riboside slowed the axon degeneration and demyelination, although it did not alter the level of macrophage infiltration after axotomy. These results suggest that CD38 deletion and supplementation of NAD+ may protect transected axon cell-autonomously after facial nerve axotomy.
Collapse
|
6
|
Takaso Y, Noda M, Hattori T, Roboon J, Hatano M, Sugimoto H, Brenner C, Yamamoto Y, Okamoto H, Higashida H, Ito M, Yoshizaki T, Hori O. Deletion of CD38 and supplementation of NAD + attenuate axon degeneration in a mouse facial nerve axotomy model. Sci Rep 2020; 10:17795. [PMID: 33082370 PMCID: PMC7576594 DOI: 10.1038/s41598-020-73984-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Following facial nerve axotomy, nerve function is not fully restored even after reconstruction. This may be attributed to axon degeneration/neuronal death and sustained neuroinflammation. CD38 is an enzyme that catalyses the hydrolysis of nicotinamide adenine dinucleotide (NAD+) and is a candidate molecule for regulating neurodegeneration and neuroinflammation. In this study, we analyzed the effect of CD38 deletion and NAD+ supplementation on neuronal death and glial activation in the facial nucleus in the brain stem, and on axon degeneration and immune cell infiltration in the distal portion of the facial nerve after axotomy in mice. Compared with wild-type mice, CD38 knockout (KO) mice showed reduced microglial activation in the facial nucleus, whereas the levels of neuronal death were not significantly different. In contrast, the axon degeneration and demyelination were delayed, and macrophage accumulation was reduced in the facial nerve of CD38 KO mice after axotomy. Supplementation of NAD+ with nicotinamide riboside slowed the axon degeneration and demyelination, although it did not alter the level of macrophage infiltration after axotomy. These results suggest that CD38 deletion and supplementation of NAD+ may protect transected axon cell-autonomously after facial nerve axotomy.
Collapse
Affiliation(s)
- Yuji Takaso
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masao Noda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Miyako Hatano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, USA.,Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Makoto Ito
- Department of Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
7
|
Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD). Sci Rep 2019; 9:13102. [PMID: 31511627 PMCID: PMC6739475 DOI: 10.1038/s41598-019-49547-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that regulates various metabolic pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Additionally, NAD serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD glycohydrolase, and it regulates DNA repair, gene expression, energy metabolism, and stress responses. Many studies have demonstrated that NAD metabolism is deeply involved in aging and aging-related diseases. Previously, we demonstrated that nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD), which are analogs of NAD, are significantly increased in Nmnat3-overexpressing mice. However, there is insufficient knowledge about NGD and NHD in vivo. In the present study, we aimed to investigate the metabolism and biochemical properties of these NAD analogs. We demonstrated that endogenous NGD and NHD were found in various murine tissues, and their synthesis and degradation partially rely on Nmnat3 and CD38. We have also shown that NGD and NHD serve as coenzymes for alcohol dehydrogenase (ADH) in vitro, although their affinity is much lower than that of NAD. On the other hand, NGD and NHD cannot be used as substrates for SIRT1, SIRT3, and PARP1. These results reveal the basic metabolism of NGD and NHD and also highlight their biological function as coenzymes.
Collapse
|
8
|
Kimura H, Ota H, Kimura Y, Takasawa S. Effects of Intermittent Hypoxia on Pulmonary Vascular and Systemic Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173101. [PMID: 31455007 PMCID: PMC6747246 DOI: 10.3390/ijerph16173101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Obstructive sleep apnea (OSA) causes many systemic disorders via mechanisms related to sympathetic nerve activation, systemic inflammation, and oxidative stress. OSA typically shows repeated sleep apnea followed by hyperventilation, which results in intermittent hypoxia (IH). IH is associated with an increase in sympathetic activity, which is a well-known pathophysiological mechanism in hypertension and insulin resistance. In this review, we show the basic and clinical significance of IH from the viewpoint of not only systemic regulatory mechanisms focusing on pulmonary circulation, but also cellular mechanisms causing lifestyle-related diseases. First, we demonstrate how IH influences pulmonary circulation to cause pulmonary hypertension during sleep in association with sleep state-specific change in OSA. We also clarify how nocturnal IH activates circulating monocytes to accelerate the infiltration ability to vascular wall in OSA. Finally, the effects of IH on insulin secretion and insulin resistance are elucidated by using an in vitro chamber system that can mimic and manipulate IH. The obtained data implies that glucose-induced insulin secretion (GIS) in pancreatic β cells is significantly attenuated by IH, and that IH increases selenoprotein P, which is one of the hepatokines, as well as TNF-α, CCL-2, and resistin, members of adipokines, to induce insulin resistance via direct cellular mechanisms. Clinical and experimental findings concerning IH give us productive new knowledge of how lifestyle-related diseases and pulmonary hypertension develop during sleep.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Advanced Medicine for Pulmonary Circulation and Respiratory Failure, Graduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan.
| | - Hiroyo Ota
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yuya Kimura
- Center for Pulmonary Diseases, NHO Tokyo National Hospital, Kiyose, Tokyo 204-0023, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
9
|
Wang Y, Han X, Li Z, Xie J. Rapid detection of insulin by immune-enrichment with silicon-nanoparticle-assisted MALDI-TOF MS. Anal Biochem 2019; 577:14-20. [PMID: 30991018 DOI: 10.1016/j.ab.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Insulin is central to regulating fat and carbohydrate metabolism in the body. However, it is difficult to detect insulin using mass spectrometry (MS). The integration of nanotechnology with mass spectrometry for selective and sensitive detection is an important research area. Our aim was to establish a method to detect insulin using silicon nanoparticle-assisted high-throughput MS. METHODS Different nanomaterials with the potential for use as MALDI components to enhance the MS signal by increasing peptide ionization were investigated in the present study. Insulin in samples was enriched with antibody-coated silicon nanoparticles and then analyzed by MALDI-TOF MS. Method validation was performed in the present study. RESULTS A platform for insulin detection with small sample volumes (100 μL) and a simplified procedure was successfully developed. The silicon nanoparticle-MS assay exhibited high sensitivity (LOQ, 0.1 nM) and good linear correlation of MS intensity with insulin concentration (R2 = 0.99). Intra-assay precision (% coefficient of variation) ranged from 1.81 to 4.53%, and interassay precision ranged from 2.71 to 8.09%. In addition, a correlation between the MALDI assay and a chemiluminescence immunoassay (CIA) was completed in patient samples, and the resulting Deming regression revealed good agreement (R2 = 0.981). CONCLUSIONS In our study, we found that the insulin signal could be enhanced with silicon nanoparticles. A new insulin determination method, immunoaffinity-based mass spectrometry, that saves time and involves simple processes, has been successfully established. The present assay was validated to detect insulin with low limits of detection.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China.
| | - Xinwei Han
- Marine college, Shandong University (Weihai), No.180 Wenhua West Road, Huancui District, Weihai, Shandong, 264209, China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China.
| | - Jiaogui Xie
- Department of Urology, The Fifteenth Military Hospital of China, Wusu, Xinjiang, 833000, China.
| |
Collapse
|
10
|
Nelissen TP, Bamford RA, Tochitani S, Akkus K, Kudzinskas A, Yokoi K, Okamoto H, Yamamoto Y, Burbach JPH, Matsuzaki H, Oguro-Ando A. CD38 is Required for Dendritic Organization in Visual Cortex and Hippocampus. Neuroscience 2018; 372:114-125. [PMID: 29306053 DOI: 10.1016/j.neuroscience.2017.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/26/2022]
Abstract
Morphological screening of mouse brains with known behavioral deficits can give great insight into the relationship between brain regions and their behavior. Oxytocin- and CD38-deficient mice have previously been shown to have behavioral phenotypes, such as restrictions in social memory, social interactions, and maternal behavior. CD38 is reported as an autism spectrum disorder (ASD) candidate gene and its behavioral phenotypes may be linked to ASD. To address whether these behavioral phenotypes relate to brain pathology and neuronal morphology, here we investigate the morphological changes in the CD38-deficient mice brains, with focus on the pathology and neuronal morphology of the cortex and hippocampus, using Nissl staining, immunohistochemistry, and Golgi staining. No difference was found in terms of cortical layer thickness. However, we found abnormalities in the number of neurons and neuronal morphology in the visual cortex and dentate gyrus (DG). In particular, there were arborisation differences between CD38-/- and CD38+/+ mice in the apical dendrites of the visual cortex and hippocampal CA1 pyramidal neurons. The data suggest that CD38 is implicated in appropriate development of brain regions important for social behavior.
Collapse
Affiliation(s)
- Thom P Nelissen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Stratenum 4.205, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Shiro Tochitani
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan; Department of Radiological Technology, Faculty of Health Science, Suzaka University of Medical Science, Suzaka, Mie, Japan
| | - Kamuran Akkus
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Kenichiro Yokoi
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendei 980-8575, Japan; Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Stratenum 4.205, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan.
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom.
| |
Collapse
|