1
|
Napolitano F, Fabozzi M, Montuori N. Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases. Int J Mol Sci 2025; 26:3546. [PMID: 40332051 DOI: 10.3390/ijms26083546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network of macromolecules that provides structural support for cells and orchestrates cell signaling, functions, and morphology. The basement membrane constitutes a peculiar sheet-like type of ECM located between epithelial tissues and underlying connective tissues. The major constituent of the basement membrane is laminin, which exerts a remarkable repertoire of biological functions such as cell differentiation, migration, adhesion, and wound healing. Laminin performs its functions by interacting with two main classes of receptors, the integrin and the non-integrin laminin receptors, creating a complex network essential for tissue integrity and regeneration. Dysfunctional actions of laminin are the cause of diverse human diseases, including cancer, infectious, and neurodegenerative diseases. This topic has attracted researchers for some time, but the diversity of cell-surface receptors, through which laminin signaling occurs, makes the role of laminin controversial. Moreover, different laminin isoforms were identified, and each specific tissue basement membrane differs from the others in their laminin composition. This review focuses on the structural and molecular basis and pathophysiological relevance of specific interactions between laminins and non-integrin receptors in development, health, and disease.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80135 Naples, Italy
| | - Maria Fabozzi
- Department of Translational Medical Sciences, University of Naples Federico II, 80135 Naples, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples Federico II, 80135 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80135 Naples, Italy
| |
Collapse
|
2
|
Asante DB, Tierno D, Woode M, Scaggiante B. Angiogenesis and Ovarian Cancer: What Potential Do Different Subtypes of Circulating Endothelial Cells Have for Clinical Application? Int J Mol Sci 2024; 25:6283. [PMID: 38892471 PMCID: PMC11172689 DOI: 10.3390/ijms25116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynaecologic malignant tumours. The neovasculature in the tumour microenvironment principally comprises endothelial cells. Haematogenous cancer metastases are significantly impacted by tumour neovascularisation, which predominantly depends on the tumour-derived endothelial vasculogenesis. There is an urgent need for biomarkers for the diagnosis, prognosis and prediction of drug response. Endothelial cells play a key role in angiogenesis and other forms of tumour vascularisation. Subtypes of circulating endothelial cells may provide interesting non-invasive biomarkers of advanced OC that might have the potential to be included in clinical analysis for patients' stratification and therapeutic management. In this review, we summarise the reported studies on circulating endothelial subtypes in OC, detailing their isolation methods as well as their potential diagnostic, prognostic, predictive and therapeutic utility for clinical application. We highlight key biomarkers for the identification of circulating endothelial cell subtypes and their targets for therapies and critically point out future challenges.
Collapse
Affiliation(s)
- Du-Bois Asante
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast P.O. Box CCLN 33, Ghana; (D.-B.A.); (M.W.)
| | - Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy;
| | - Michael Woode
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast P.O. Box CCLN 33, Ghana; (D.-B.A.); (M.W.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
3
|
Onyeisi JOS, Nader HB, Lopes CC. Effects of syndecan-4 silencing on the extracellular matrix remodeling in anoikis-resistant endothelial cells. Cell Biol Int 2024; 48:883-897. [PMID: 38591778 DOI: 10.1002/cbin.12158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/07/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Anoikis is a process of programmed cell death induced by the loss of cell/matrix interactions. In previous work, we have shown that the acquisition of anoikis resistance upregulates syndecan-4 (SDC4) expression in endothelial cells. In addition, SDC4 gene silencing by microRNA interference reverses the transformed phenotype of anoikis-resistant endothelial cells. Due to this role of SDC4 in regulating the behavior of anoikis-resistant endothelial cells, we have evaluated that the functional consequences of SDC4 silencing in the extracellular matrix (ECM) remodeling in anoikis-resistant rabbit aortic endothelial cells submitted to SDC4 gene silencing (miR-Syn4-Adh-1-EC). For this, we evaluated the expression of adhesive proteins, ECM receptors, nonreceptor protein-tyrosine kinases, and ECM-degrading enzymes and their inhibitors. Altered cell behavior was monitored by adhesion, migration, and tube formation assays. We found that SDC4 silencing led to a decrease in migration and angiogenic capacity of anoikis-resistant endothelial cells; this was accompanied by an increase in adhesion to fibronectin. Furthermore, after SDC4 silencing, we observed an increase in the expression of fibronectin, collagen IV, and vitronectin, and a decrease in the expression of integrin α5β1 and αvβ3, besides that, silenced cells show an increase in Src and FAK expression. Quantitative polymerase chain reaction and Western blot analysis demonstrated that SDC4 silencing leads to altered gene and protein expression of MMP2, MMP9, and HSPE. Compared with parental cells, SDC4 silenced cells showed a decrease in nitric oxide production and eNOS expression. In conclusion, these data demonstrate that SDC4 plays an important role in ECM remodeling. In addition, our findings represent an important step toward understanding the mechanism by which SDC4 can reverse the transformed phenotype of anoikis-resistant endothelial cells.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, Sao Paulo, São Paulo, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, Sao Paulo, São Paulo, Brazil
| | - Carla Cristina Lopes
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, Sao Paulo, São Paulo, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
4
|
González-Arriagada WA, Coletta RD, Lozano-Burgos C, García C, Maripillán J, Alcayaga-Miranda F, Godínez-Pacheco B, Oyarce-Pezoa S, Martínez-Flores R, García IE. CR5/CCL5 axis is linked to a poor outcome, and inhibition reduces metastasis in oral squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:17335-17346. [PMID: 37831273 DOI: 10.1007/s00432-023-05443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE The CCR5/CCL5 axis is essential for interactions between malignant cells and microenvironment components, promoting tumor progression in oral squamous cell carcinoma (OSCC). This study aims to evaluate the association of CCL5 and CCR5 with the behavior of oral cancer and assess the therapeutic potential of a CCR5 antagonist. METHODS A retrospective study to analyze CCR5 and CCL5 expression on paraffin-embedded tissues was performed. In cell lines, rhCCL5 was added to induce CCR5-related pathways, and Maraviroc and shRNA against CCR5 were used to neutralize the receptor. Finally, an in vivo murine orthotopic xenograft model of tongue cancer was used to evaluate Maraviroc as an oncologic therapy. After 15 days, the mice were killed, and the primary tumors and cervical lymph nodes were analyzed. RESULTS The expression of CCR5 was associated with clinical stage and metastasis, and CCL5 was related to overall survival. Adding rhCCL5 induced cell proliferation, while shRNA and Maraviroc reduced it in a dose-dependent manner. Maraviroc treatment also increased apoptosis and modified cytoskeletal organization. In vivo, Maraviroc reduced neck metastasis. CONCLUSIONS The effects of CCR5 antagonists in OSCC have been poorly studied, and this study reports in vitro and in vivo evidence for the effects of Maraviroc in OSCC. Our results suggest that the CCR5/CCL5 axis plays a role in oral cancer behavior, and that its inhibition is a promising new therapy alternative.
Collapse
Affiliation(s)
- Wilfredo Alejandro González-Arriagada
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Ricardo D Coletta
- Oral Pathology and Graduate Program in Oral Biology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | | | - Cynthia García
- PhD Program in Biomedicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Maripillán
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisca Alcayaga-Miranda
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | | | - René Martínez-Flores
- Facultad de Odontología, Unidad de Patología y Medicina Oral, Universidad Andres Bello, Santiago, Chile
| | - Isaac E García
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación Interoperativa en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Ji S, Wu W, Jiang Q. Crosstalk between Endothelial Cells and Tumor Cells: A New Era in Prostate Cancer Progression. Int J Mol Sci 2023; 24:16893. [PMID: 38069225 PMCID: PMC10707594 DOI: 10.3390/ijms242316893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostate cancer stands as one of the most prevalent malignancies afflicting men worldwide. The tumor microenvironment plays a pivotal role in tumor progression, comprising various cell types including endothelial cells, tumor-associated fibroblasts, and macrophages. Recent accumulating evidence underscores the indispensable contribution of endothelial cells to prostate cancer development. Both endothelial cells and tumor cells release a multitude of factors that instigate angiogenesis, metastasis, and even drug resistance in prostate cancer. These factors serve as regulators within the tumor microenvironment and represent potential therapeutic targets for managing prostate cancer. In this review, we provide an overview of the crucial functions of endothelial cells in angiogenesis, metastasis, and drug resistance, and their prospective therapeutic applications in combating this disease.
Collapse
Affiliation(s)
| | | | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; (S.J.); (W.W.)
| |
Collapse
|
6
|
Shen P, Bai ZJ, Zhou L, Wang NN, Ni ZX, Sun DZ, Huang CS, Hu YY, Xiao CR, Zhou W, Zhang BL, Gao Y. A Scd1-mediated metabolic alteration participates in liver responses to low-dose bavachin. J Pharm Anal 2023; 13:806-816. [PMID: 37577386 PMCID: PMC10422113 DOI: 10.1016/j.jpha.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.
Collapse
Affiliation(s)
- Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Jie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhe-Xin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - De-Zhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cong-Shu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yang-Yi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cheng-Rong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
7
|
Yao X, Zeng Y. Tumour associated endothelial cells: origin, characteristics and role in metastasis and anti-angiogenic resistance. Front Physiol 2023; 14:1199225. [PMID: 37389120 PMCID: PMC10301839 DOI: 10.3389/fphys.2023.1199225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Tumour progression and metastasis remain the leading causes of cancer-related death worldwide. Tumour angiogenesis is essential for tumour progression. The vasculature surrounding tumours is not only a transport channel for nutrients, oxygen, and metabolites, but also a pathway for metastasis. There is a close interaction between tumour cells and endothelial cells in the tumour microenvironment. Recent studies have shown that tumour-associated endothelial cells have different characteristics from normal vascular endothelial cells, play an important role in tumour progression and metastasis, and are expected to be a key target for cancer therapy. This article reviews the tissue and cellular origin of tumour-associated endothelial cells and analyses the characteristics of tumour-associated endothelial cells. Finally, it summarises the role of tumour-associated endothelial cells in tumour progression and metastasis and the prospects for their use in clinical anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xinghong Yao
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Radiotherapy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F, Velaei K. Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int 2023; 47:683-698. [PMID: 36453448 DOI: 10.1002/cbin.11970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
The development of effective treatments for cancers requires investigations for a more detailed and comprehensive understanding of the basic cellular mechanisms involved in carcinogenesis, cancer progression, and metastasis. One of those driving mechanisms is anoikis, a special type of apoptosis, which is induced by losing anchorage from the extracellular matrix (ECM). In other words, resisting death in detached cells (cells without ECM) forms an anoikis-resistant phenotype. Since the anoikis-resistance state compensates for the initial steps of cancer metastasis, this review aimed to discuss mechanisms of gaining anoikis/anoikis resistance phenotype in tumor cells. Finally, we highlighted the significance of anoikis in malignancies so as to provide clear insight into cancer diagnosis and therapy development.
Collapse
Affiliation(s)
- Farzad Sattari Fard
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fakhrosadat Sajjadian
- Department of Radiology, Faculty of Para-Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Xu X, Ding C, Zhong H, Qin W, Shu D, Yu M, Abuduaini N, Zhang S, Yang X, Feng B. Integrative analysis revealed that distinct cuprotosis patterns reshaped tumor microenvironment and responses to immunotherapy of colorectal cancer. Front Immunol 2023; 14:1165101. [PMID: 37006250 PMCID: PMC10060625 DOI: 10.3389/fimmu.2023.1165101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundCuprotosis is a novel form of programmed cell death that involves direct targeting of key enzymes in the tricarboxylic acid (TCA) cycle by excess copper and may result in mitochondrial metabolic dysfunction. However, whether cuprotosis may mediate the tumor microenvironment (TME) and immune regulation in colorectal cancer (CRC) remains unclear.MethodsTen cuprotosis-related genes were selected and unsupervised consensus clustering was performed to identify the cuprotosis patterns and the correlated TME characteristics. Using principal component analysis, a COPsig score was established to quantify cuprotosis patterns in individual patients. The top 9 most important cuprotosis signature genes were analyzed using single-cell transcriptome data.ResultsThree distinct cuprotosis patterns were identified. The TME cell infiltration characteristics of three patterns were associated with immune-excluded, immune-desert, and immune-inflamed phenotype, respectively. Based on individual cuprotosis patterns, patients were assigned into high and low COPsig score groups. Patients with a higher COPsig score were characterized by longer overall survival time, lower immune cell as well as stromal infiltration, and greater tumor mutational burden. Moreover, further analysis demonstrated that CRC patients with a higher COPsig score were more likely to respond to immune checkpoint inhibitors and 5-fluorouracil chemotherapy. Single-cell transcriptome analysis indicated that cuprotosis signature genes recruited tumor-associated macrophages to TME through the regulation of TCA and the metabolism of glutamine and fatty acid, thus influencing the prognosis of CRC patients.ConclusionThis study indicated that distinct cuprotosis patterns laid a solid foundation to the explanation of heterogeneity and complexity of individual TME, thus guiding more effective immunotherapy as well as adjuvant chemotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sen Zhang
- *Correspondence: Bo Feng, ; Xiao Yang, ; Sen Zhang,
| | - Xiao Yang
- *Correspondence: Bo Feng, ; Xiao Yang, ; Sen Zhang,
| | - Bo Feng
- *Correspondence: Bo Feng, ; Xiao Yang, ; Sen Zhang,
| |
Collapse
|
10
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
11
|
Vinaiphat A, Pazhanchamy K, JebaMercy G, Ngan SC, Leow MKS, Ho HH, Gao YG, Lim KL, Richards AM, de Kleijn DPV, Chen CP, Kalaria RN, Liu J, O'Leary DD, McCarthy NE, Sze SK. Endothelial Damage Arising From High Salt Hypertension Is Elucidated by Vascular Bed Systematic Profiling. Arterioscler Thromb Vasc Biol 2023; 43:427-442. [PMID: 36700429 DOI: 10.1161/atvbaha.122.318439] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. METHODS We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet-induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. RESULTS Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet-induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. CONCLUSIONS These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Kalailingam Pazhanchamy
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Gnanasekaran JebaMercy
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Melvin Khee-Shing Leow
- Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore
- Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.)
| | - Hee Hwa Ho
- Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.)
| | - Yong-Gui Gao
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore
| | - A Mark Richards
- Department of Cardiology, National University Heart Centre, Singapore (A.M.R.)
- Department of Cardiology, University of Otago, Christchurch, New Zealand (A.M.R.)
| | | | - Christopher P Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.P.C.)
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom (R.N.K.)
| | - Jian Liu
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (N.E.M.)
| | - Siu Kwan Sze
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| |
Collapse
|
12
|
Onyeisi JOS, Greve B, Espinoza-Sánchez NA, Kiesel L, Lopes CC, Götte M. microRNA-140-3p modulates invasiveness, motility, and extracellular matrix adhesion of breast cancer cells by targeting syndecan-4. J Cell Biochem 2021; 122:1491-1505. [PMID: 34180077 DOI: 10.1002/jcb.30071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Syndecan-4, a predicted target of the microRNA miR-140-3p, plays an important role in multiple steps of tumor progression and is the second most abundant heparan sulfate proteoglycan produced by breast carcinoma cell lines. To investigate the potential functional relationship of miR-140-3p and syndecan-4, MDA-MB-231, SKBR3, and MCF-7 breast cancer (BC) cells were transiently transfected with pre-miR-140-3p, syndecan-4 small interfering RNAJ, or control reagents, respectively. Altered cell behavior was monitored by adhesion, migration, and invasion chamber assays. Moreover, the prognostic value of syndecan-4 was assessed by Kaplan-Maier Plotter analysis of gene expression data from tumor samples of 4929 patients. High expression of syndecan-4 was associated with better relapse-free survival in the whole collective of BC patients, but correlated with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. miR-140-3p expression was associated with improved survival irrespective of hormone receptor status. miR-140-3p overexpression induced posttranscriptional downregulation of syndecan-4, as demonstrated by quantitative real-time PCR (qPCR), flow cytometry, and luciferase assays, resulting in decreased BC cell migration and matrigel invasiveness. Furthermore, miR-140-3p overexpression and syndecan-4 silencing increased the adhesion of BC to fibronectin and laminin. qPCR analysis demonstrated that syndecan-4 silencing leads to altered gene expression of adhesion-related molecules, such as fibronectin and focal adhesion kinase, as well as in the gene expression of the proinvasive factors matrix metalloproteinase 2 and heparanase (also known as HPSE). We conclude that syndecan-4 is a novel target of miR-140-3p that regulates BC cell invasiveness and cell-matrix interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Nancy Adriana Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
13
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|