1
|
Hong G, Zhou Y, Yang S, Yan S, Lu J, Xu B, Zhan Z, Jiang H, Wei B, Wang J. Metformin acts on miR-181a-5p/PAI-1 axis in stem cells providing new strategies for improving age-related osteogenic differentiation decline. Stem Cells 2024; 42:1055-1069. [PMID: 39283761 DOI: 10.1093/stmcls/sxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
A general decline in the osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMSCs) in the elderly is a clinical consensus, with diverse opinions on the mechanisms. Many studies have demonstrated that metformin (MF) significantly protects against osteoporosis and reduces fracture risk. However, the exact mechanism of this effect remains unclear. In this study, we found that the decreased miR-181a-5p expression triggered by MF treatment plays a critical role in recovering the osteogenic ability of aging hBMSCs (derived from elderly individuals). Notably, the miR-181a-5p expression in hBMSCs was significantly decreased with prolonged MF (1000 μM) treatment. Further investigation revealed that miR-181a-5p overexpression markedly impairs the osteogenic ability of hBMSCs, while miR-181a-5p inhibition reveals the opposite result. We also found that miR-181a-5p could suppress the protein translation process of plasminogen activator inhibitor-1 (PAI-1), as evidenced by luciferase assays and Western blots. Additionally, low PAI-1 levels were associated with diminished osteogenic ability, whereas high levels promoted it. These findings were further validated in human umbilical cord mesenchymal stem cells (hUCMSCs). Finally, our in vivo experiment with a bone defects rat model confirmed that the agomiR-181a-5p (long-lasting miR-181a-5p mimic) undermined bone defects recovery, while the antagomiR-181a-5p (long-lasting miR-181a-5p inhibitor) significantly promoted the bone defects recovery. In conclusion, we found that MF promotes bone tissue regeneration through the miR-181a-5p/PAI-1 axis by affecting MSC osteogenic ability, providing new strategies for the treatment of age-related bone regeneration disorders.
Collapse
Affiliation(s)
- Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Yulan Zhou
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Shukai Yang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Shouquan Yan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jiaxu Lu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Bo Xu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Zeyu Zhan
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Huasheng Jiang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Bo Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| |
Collapse
|
2
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Fan S, Zhang C, Sun X, Su C, Xue Y, Song X, Deng R. Metformin enhances osteogenic differentiation of BMSC by modulating macrophage M2 polarization. Sci Rep 2024; 14:20267. [PMID: 39217251 PMCID: PMC11365931 DOI: 10.1038/s41598-024-71318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are capable of developing into osteoblastic cell lines in vitro and regenerating bone tissue in vivo, and they are considered to be a reliable source for bone regenerative medicine. In recent years, studies have shown that the immune microenvironment is important for osteogenesis, in which macrophages are an important component of innate immunity and coordinate with stem cells. Metformin (Met), a hypoglycemic drug that exerts a powerful effect on metabolic signaling, has been shown to modulate inflammatory responses and osteogenic activity. However, whether metformin modulates macrophage polarization and subsequently affects osteogenesis remains to be elucidated. In the present study, we investigated the potential immunomodulatory capacity of metformin on macrophage inflammatory responses and phenotypic switching, and the subsequent effects on osteogenic differentiation of BMSCs. Flow cytometry and qPCR were used to study the effects of metformin on macrophage phenotypic regulation. qPCR, ALP, ARS and calcium content measurement and ALP activity assay were used to determine the effects of macrophage-secreted activators on the osteogenic differentiation of BMSCs. Our study demonstrates that metformin can improve the immune microenvironment by modulating macrophage polarization towards an anti-inflammatory phenotype, promoting an increase in a range of anti-inflammatory factors and inhibiting pro-inflammatory factors. This was characterized by increased expression of IL-10 and CD206, Arg-1 and decreased expression of IL-1β, TNF-α, IL-6 and iNOS. In addition, metformin-modulated macrophage-conditioned medium promoted osteogenic differentiation of BMSCs, increased the expression levels of genes (ALP, Runx-2, OCN, and Col-1), enhanced ALP activity, and significantly formed mineralized nodules. In conclusion, our new study elucidates that metformin can promote osteogenic differentiation of BMSCs by modulating macrophage phenotype and thereby.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Cunliang Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanchao Su
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Liu X, Li Z, Liu L, Zhang P, Wang Y, Ding G. Metformin-mediated effects on mesenchymal stem cells and mechanisms: proliferation, differentiation and aging. Front Pharmacol 2024; 15:1465697. [PMID: 39193338 PMCID: PMC11347424 DOI: 10.3389/fphar.2024.1465697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of pluripotent adult stem cell with strong self-renewal and multi-differentiation abilities. Their excellent biological traits, minimal immunogenicity, and abundant availability have made them the perfect seed cells for treating a wide range of diseases. After more than 60 years of clinical practice, metformin is currently one of the most commonly used hypoglycaemic drugs for type 2 diabetes in clinical practice. In addition, metformin has shown great potential in the treatment of various systemic diseases except for type 2 diabetes in recent years, and the mechanisms are involved with antioxidant stress, anti-inflammatory, and induced autophagy, etc. This article reviews the effects and the underlying mechanisms of metformin on the biological properties, including proliferation, multi-differentiation, and aging, of MSCs in vitro and in vivo with the aim of providing theoretical support for in-depth scientific research and clinical applications in MSCs-mediated disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
5
|
Li H, Mao B, Zhong J, Li X, Sang H. Localized delivery of metformin via 3D printed GelMA-Nanoclay hydrogel scaffold for enhanced treatment of diabetic bone defects. J Orthop Translat 2024; 47:249-260. [PMID: 39070239 PMCID: PMC11282943 DOI: 10.1016/j.jot.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Background Diabetic bone defects present significant challenges for individuals with diabetes. While metformin has been explored for bone regeneration via local delivery, its application in treating diabetic bone defects remains under-explored. In this study, we aim to leverage 3D printing technology to fabricate a GelMA-Nanoclay hydrogel scaffold loaded with metformin specifically for this purpose. The objective is to assess whether the in situ release of metformin can effectively enhance osteogenesis, angiogenesis, and immunomodulation in the context of diabetic bone defects. Materials and methods Utilizing 3D printing technology, we constructed a GelMA-Nanoclay-Metformin hydrogel scaffold with optimal physical properties and biocompatibility. The osteogenic, angiogenic, and immunomodulatory characteristics of the hydrogel scaffold were thoroughly investigated through both in vitro and in vivo experiments. Results GelMA10%-Nanoclay8%-Metformin5mg/mL was selected as the bioink for 3D printing due to its favorable swelling rate, degradation rate, mechanical strength, and drug release rate. Through in vitro investigations, the hydrogel scaffold extract, enriched with metformin, demonstrated a substantial enhancement in the proliferation and migration of BMSCs within a high-glucose microenvironment. It effectively enhances osteogenesis, angiogenesis, and immunomodulation. In vivo experimental outcomes further underscored the efficacy of the metformin-loaded GelMA-Nanoclay hydrogel scaffold in promoting superior bone regeneration within diabetic bone defects. Conclusions In conclusion, while previous studies have explored local delivery of metformin for bone regeneration, our research is pioneering in its application to diabetic bone defects using a 3D printed GelMA-Nanoclay hydrogel scaffold. This localized delivery approach demonstrates significant potential for enhancing bone regeneration in diabetic patients, offering a novel approach for treating diabetic bone defects. The translational potential of this article Our study demonstrates, for the first time, the successful loading of the systemic antidiabetic drug metformin onto a hydrogel scaffold for localized delivery. This approach exhibits significant efficacy in mending diabetic bone defects, presenting a promising new avenue for the treatment of such conditions.
Collapse
Affiliation(s)
- Hetong Li
- Corresponding author. No.1333 Xinhu Street, Shenzhen, Guangdong, 518000, China.
| | | | - Jintao Zhong
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiuwang Li
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Hongxun Sang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Li S, Zhang J, Liu X, Wang N, Sun L, Liu J, Liu X, Masoudi A, Wang H, Li C, Guo C, Liu X. Proteomic characterization of hUC-MSC extracellular vesicles and evaluation of its therapeutic potential to treat Alzheimer's disease. Sci Rep 2024; 14:5959. [PMID: 38472335 PMCID: PMC10933327 DOI: 10.1038/s41598-024-56549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.
Collapse
Affiliation(s)
- Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinxing Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Luyao Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianling Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
- Cancer Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Xingliang Liu
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunxia Li
- Obstetrics and Gynaecology, The Fifth Hospital of Zhangjiakou, Zhangjiakou, 075000, China
| | - Chunyan Guo
- Hebei Key Laboratory of Neuropharmacology; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
7
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
8
|
Hu Z, Jiang Z, Meng S, Liu R, Yang K. Research Progress on the Osteogenesis-Related Regulatory Mechanisms of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1252-1267. [PMID: 36917312 DOI: 10.1007/s12015-023-10521-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
In recent years, research on human umbilical cord mesenchymal stem cells (hUCMSCs) derived from human umbilical cord tissue has accelerated and entered clinical application research. Compared with mesenchymal stem cells (MSCs) from other sources, hUCMSCs can be extracted from different parts of umbilical cord or from the whole umbilical cord. It has the characteristics of less ethical controversy, high differentiation potential, strong proliferation ability, efficient expansion in vitro, avoiding immune rejection and immune privilege, and avoids the limitations of lack of embryonic stem cells, heterogeneity, ethical and moral constraints. hUCMSCs avoid the need for embryonic stem cell sources, heterogeneity, and ethical and moral constraints. Bone defects are very common in clinical practice, but completely effective bone tissue regeneration treatment is challenging. Currently, autologous bone transplantation and allogeneic bone transplantation are main treatment approaches in clinical work, but each has different shortcomings, such as limited sources, invasiveness, immune rejection and insufficient osteogenic ability. Therefore, to solve the bottleneck of bone tissue regeneration and repair, a great amount of research has been carried out to explore the clinical advantages of hUCMSCs as seed cells to promote osteogenesis.However, the regulation of osteogenic differentiation of hUCMSCs is an extremely complex process. Although a large number of studies have demonstrated that the role of hUCMSCs in enhancing local bone regeneration and repair through osteogenic differentiation and transplantation into the body involves multiple signaling pathways, there is no relevant article that summarize the findings. This article discusses the osteogenesis-related regulatory mechanisms of hUCMSCs, summarizes the currently known related mechanisms, and speculates on the possible signals.
Collapse
Affiliation(s)
- Zhengqi Hu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shengzi Meng
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Liu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Kun Yang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
9
|
Li X, Guo L, Chen J, Liang H, Liu Y, Chen W, Zhou L, Shan L, Wang H. Intravenous injection of human umbilical cord-derived mesenchymal stem cells ameliorates not only blood glucose but also nephrotic complication of diabetic rats through autophagy-mediated anti-senescent mechanism. Stem Cell Res Ther 2023; 14:146. [PMID: 37248536 PMCID: PMC10228071 DOI: 10.1186/s13287-023-03354-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus, which is characterized by early occurrence of albuminuria and end-stage glomerulosclerosis. Senescence and autophagy of podocytes play an important role in DN development. Human umbilical cord-derived mesenchymal stem cells (hucMSCs) have potential in the treatment of diabetes and its complications. However, the role of hucMSCs in the treatment of DN and the underlying mechanism remain unclear. METHODS In vivo, a streptozotocin-induced diabetic male Sprague Dawley rat model was established to determine the renoprotective effect of hucMSCs on DN by biochemical analysis, histopathology, and immunohistochemical staining of renal tissues. And the distribution of hucMSCs in various organs in rats within 168 h was analyzed. In vitro, CCK8 assay, wound healing assay, and β-galactosidase staining were conducted to detect the beneficial effects of hucMSCs on high glucose-induced rat podocytes. Real-time PCR and western blot assays were applied to explore the mechanism of action of hucMSCs. RESULTS The in vivo data revealed that hucMSCs were distributed into kidneys and significantly protected kidneys from diabetic damage. The in vitro data indicated that hucMSCs improved cell viability, wound healing, senescence of the high glucose-damaged rat podocytes through a paracrine action mode. Besides, the altered expressions of senescence-associated genes (p16, p53, and p21) and autophagy-associated genes (Beclin-1, p62, and LC3) were improved by hucMSCs. Mechanistically, hucMSCs protected high glucose-induced injury in rat podocytes by activating autophagy and attenuating senescence through the AMPK/mTOR pathway. CONCLUSIONS In conclusion, hucMSCs might be a promising therapeutic strategy for the clinical treatment of DN-induced renal damages.
Collapse
Affiliation(s)
- Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Le Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haowei Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Tao Z, Liu L, Wu M, Wang Q, Wang Y, Xiong J, Xue C. Metformin promotes angiogenesis by enhancing VEGFa secretion by adipose-derived stem cells via the autophagy pathway. Regen Biomater 2023; 10:rbad043. [PMID: 37250977 PMCID: PMC10224801 DOI: 10.1093/rb/rbad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Human adipose tissue-derived stem cell (ADSC) derivatives are cell-free, with low immunogenicity and no potential tumourigenicity, making them ideal for aiding wound healing. However, variable quality has impeded their clinical application. Metformin (MET) is a 5' adenosine monophosphate-activated protein kinase activator associated with autophagic activation. In this study, we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis. We employed various scientific techniques to evaluate the influence of MET on ADSC, assess angiogenesis and autophagy in MET-treated ADSC in vitro, and examine whether MET-treated ADSC increase angiogenesis. We found that low MET concentrations exerted no appreciable effect on ADSC proliferation. However, MET was observed to enhance the angiogenic capacity and autophagy of ADSC. MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release, which contributed to promoting the therapeutic efficacy of ADSC. In vivo experiments confirmed that in contrast to untreated ADSC, MET-treated ADSC promoted angiogenesis. Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.
Collapse
Affiliation(s)
| | | | | | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Yuchong Wang
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| | - Jiachao Xiong
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| | - Chunyu Xue
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| |
Collapse
|
11
|
Gao X, Du J, Huang Y, Li S, Hao D, He B, Yan L. Clinical effect of kyphoplasty in the treatment of osteoporotic thoracolumbar compression fractures in patients with diabetes. Front Surg 2023; 9:1031547. [PMID: 36824219 PMCID: PMC9941632 DOI: 10.3389/fsurg.2022.1031547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
Objective To study the clinical effect and influencing factors of kyphoplasty in the treatment of osteoporotic thoracolumbar compression fractures (OTCF) complicated with type 2 diabetes mellitus (T2DM). Methods A total of 472 patients with OTCF complicated with diabetes who were enrolled in our hospital from January to December 2019 were selected as the study subjects, and all patients were treated with percutaneous kyphoplasty (PKP). The effects of gender, age, smoking, drinking, body mass index (BMI), bone mass density (T score), fasting blood glucose level, fasting C-peptide, glycosylated hemoglobin, course of T2DM, vertebral segment and surgical instrument on postoperative improvement were analyzed. The quality of life was evaluated by visual analog score (VAS) and Oswestry disability index (ODI) before PKP and 7 days, and 6 months after PKP, and the patient satisfaction was assessed by the modified Macnab criteria at 6 months postoperatively. Results The overall excellent and good rate of evaluation result was satisfactory. In multivariate regression, independent risk factors for poor patient satisfaction included: age ≥70 years (odds ratio (OR) = 2.298, 95% confidence interval [CI] 1.290-4.245, P = 0.025), fasting blood glucose ≥8 mmol/L [OR = 2.657, 95%(CI) 1.288-4.121, P = 0.016], glycosylated hemoglobin ≥6.5 mmol/L [OR = 3.438, 95%(CI) 2.543-4.628, P = 0.001], duration ≥8 years [OR = 1.732, 95%(CI) 1.471-3.253, P = 0.019] and Kyphon instrument [OR = 1.472, 95%(CI) 1.112-2.228, P = 0.018] were independent influencing factors of OTCF complicated with DM. Conclusion Kyphoplasty for patients with osteoporotic thoracolumbar compression fractures complicated with diabetes can achieve a satisfactory clinical effect, the curative effect is affected by many factors, attention to these factors can improve the clinical effect.
Collapse
Affiliation(s)
- Xiangcheng Gao
- Medical College, Yan'an University, Yan'an, China,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China,Correspondence: Liang Yan
| |
Collapse
|
12
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
13
|
Effects of Metformin Delivery via Biomaterials on Bone and Dental Tissue Engineering. Int J Mol Sci 2022; 23:ijms232415905. [PMID: 36555544 PMCID: PMC9779818 DOI: 10.3390/ijms232415905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bone tissue engineering is a promising approach that uses seed-cell-scaffold drug delivery systems to reconstruct bone defects caused by trauma, tumors, or other diseases (e.g., periodontitis). Metformin, a widely used medication for type II diabetes, has the ability to enhance osteogenesis and angiogenesis by promoting cell migration and differentiation. Metformin promotes osteogenic differentiation, mineralization, and bone defect regeneration via activation of the AMP-activated kinase (AMPK) signaling pathway. Bone tissue engineering depends highly on vascular networks for adequate oxygen and nutrition supply. Metformin also enhances vascular differentiation via the AMPK/mechanistic target of the rapamycin kinase (mTOR)/NLR family pyrin domain containing the 3 (NLRP3) inflammasome signaling axis. This is the first review article on the effects of metformin on stem cells and bone tissue engineering. In this paper, we review the cutting-edge research on the effects of metformin on bone tissue engineering. This includes metformin delivery via tissue engineering scaffolds, metformin-induced enhancement of various types of stem cells, and metformin-induced promotion of osteogenesis, angiogenesis, and its regulatory pathways. In addition, the dental, craniofacial, and orthopedic applications of metformin in bone repair and regeneration are also discussed.
Collapse
|
14
|
Deng S, Lei T, Chen H, Zheng H, Xiao Z, Cai S, Hang Z, Xiong W, Yu Y, Zhang X, Yang Y, Bi W, Du H. Metformin pre-treatment of stem cells from human exfoliated deciduous teeth promotes migration and angiogenesis of human umbilical vein endothelial cells for tissue engineering. Cytotherapy 2022; 24:1095-1104. [PMID: 36064533 DOI: 10.1016/j.jcyt.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Stem cells from human exfoliated deciduous teeth (SHED) play a significant role in tissue engineering and regenerative medicine. Angiogenesis is crucial in tissue regeneration and a primary target of regenerative medicine. As a first-line anti-diabetic drug, metformin demonstrates numerous valuable impacts on stem cells. This study aimed to explore metformin's impact and mechanism of action on SHED-mediated angiogenesis. METHODS First, cell proliferation; flow cytometry; osteogenic, adipogenic and chondrogenic induction; and proteomics analyses were conducted to explore the role of metformin in SHED. Subsequently, migration and tube formation assays were used to evaluate chemotaxis and angiogenesis enhancement by SHED pre-treated with metformin under co-culture conditions in vitro, and relative messenger RNA expression levels were determined by quantitative reverse transcription polymerase chain reaction. Finally, nude mice were used for in vivo tube formation assay, and sections were analyzed through immunohistochemistry staining with anti-human CD31 antibody. RESULTS Metformin significantly promoted SHED proliferation as well as osteogenic, adipogenic and chondrogenic differentiation. Proteomics showed that metformin significantly upregulated 124 differentially abundant proteins involved in intracellular processes, including various proteins involved in cell migration and angiogenesis, such as MAPK1. The co-culture system demonstrated that SHED pre-treated with metformin significantly improved the migration and angiogenesis of human umbilical vein endothelial cells. In addition, SHED pre-treated with metformin possessed greater ability to promote angiogenesis in vivo. CONCLUSIONS In summary, the authors' findings illustrate metformin's mechanism of action on SHED and confirm that SHED pre-treated with metformin exhibits a strong capacity for promoting angiogenesis. This helps in promoting the application of dental pulp-derived stem cells pre-treated with metformin in regeneration engineering.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Hongyu Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huiting Zheng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Zhongci Hang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Weini Xiong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yanqing Yu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
15
|
Ren WH, Xin S, Yang K, Yu YB, Li SM, Zheng JJ, Huang K, Zeng RC, Yang XX, Gao L, Li SQ, Zhi K. Strontium‐Doped Hydroxyapatite Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoporotic Rats through the CaSR‐JAK2/STAT3 Signaling Pathway. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wen-Hao Ren
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
| | - Shanshan Xin
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
| | - Kai Yang
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 China
| | - Yan-Bin Yu
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology Shandong University of Science and Technology Qingdao 266590 China
| | - Shao-Ming Li
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
| | - Jing-Jing Zheng
- Department of Endodontics The Affiliated Hospital of Qingdao University Qingdao 266003 China
| | - Kai Huang
- Department of Radiology The Affiliated Hospital of Qingdao University Qingdao China
| | - Rong-Chang Zeng
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 China
| | - Xiao-Xia Yang
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- Key Lab of Oral Clinical Medicine The Affiliated Hospital of Qingdao University Qingdao 266003 China
| | - Shuo-Qi Li
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery The Affiliated Hospital of Qingdao University No.1677 Wutaishan Road Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao University Qingdao 266003 China
- Key Lab of Oral Clinical Medicine The Affiliated Hospital of Qingdao University Qingdao 266003 China
| |
Collapse
|
16
|
Xiong S, Liu W, Song Y, Du J, Wang T, Zhang Y, Huang Z, He Q, Dong C, Yu Z, Ma X. Metformin Promotes Mechanical Stretch-Induced Skin Regeneration by Improving the Proliferative Activity of Skin-Derived Stem Cells. Front Med (Lausanne) 2022; 9:813917. [PMID: 35685420 PMCID: PMC9170926 DOI: 10.3389/fmed.2022.813917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Skin expansion by mechanical stretch is an essential and widely used treatment for tissue defects in plastic and reconstructive surgery; however, the regenerative capacity of mechanically stretched skin limits clinical treatment results. Here, we propose a strategy to enhance the regenerative ability of mechanically stretched skin by topical application of metformin. Methods We established a mechanically stretched scalp model in male rats (n = 20), followed by their random division into two groups: metformin-treated (n = 10) and control (n = 10) groups. We measured skin thickness, collagen volume fraction, cell proliferation, and angiogenesis to analyze the effects of topical metformin on mechanically stretched skin, and immunofluorescence staining was performed to determine the contents of epidermal stem cells and hair follicle bulge stem cells in mechanically stretched skin. Western blot was performed to detect the protein expression of skin-derived stem cell markers. Results Compared with the control group, metformin treatment was beneficial to mechanical stretch-induced skin regeneration by increasing the thicknesses of epidermis (57.27 ± 10.24 vs. 31.07 ± 9.06 μm, p < 0.01) and dermis (620.2 ± 86.17 vs. 402.1 ± 22.46 μm, p < 0.01), number of blood vessels (38.30 ± 6.90 vs. 17.00 ± 3.10, p < 0.01), dermal collagen volume fraction (60.48 ± 4.47% vs. 41.28 ± 4.14%, p < 0.01), and number of PCNA+, Aurora B+, and pH3+ cells. Additionally, we observed significant elevations in the number of proliferating hair follicle bulge stem cells [cytokeratin (CK)15+/proliferating cell nuclear antigen (PCNA)+] (193.40 ± 35.31 vs. 98.25 ± 23.47, p < 0.01) and epidermal stem cells (CK14+/PCNA+) (83.00 ± 2.38 vs. 36.38 ± 8.96, p < 0.01) in the metformin-treated group, and western blot results confirmed significant increases in CK14 and CK15 expression following metformin treatment. Conclusion Topical application of metformin enhanced the regenerative capacity of mechanically stretched skin, with the underlying mechanism possibly attributed to improvements in the proliferative activity of skin-derived stem cells.
Collapse
|
17
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Cai S, Lei T, Bi W, Sun S, Deng S, Zhang X, Yang Y, Xiao Z, Du H. Chitosan Hydrogel Supplemented with Metformin Promotes Neuron-like Cell Differentiation of Gingival Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23063276. [PMID: 35328696 PMCID: PMC8955038 DOI: 10.3390/ijms23063276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Human gingival mesenchymal stem cells (GMSCs) are derived from migratory neural crest stem cells and have the potential to differentiate into neurons. Metformin can inhibit stem–cell aging and promotes the regeneration and development of neurons. In this study, we investigated the potential of metformin as an enhancer on neuronal differentiation of GMSCs in the growth environment of chitosan hydrogel. The crosslinked chitosan/β–glycerophosphate hydrogel can form a perforated microporous structure that is suitable for cell growth and channels to transport water and macromolecules. GMSCs have powerful osteogenic, adipogenic and chondrogenic abilities in the induction medium supplemented with metformin. After induction in an induction medium supplemented with metformin, Western blot and immunofluorescence results showed that GMSCs differentiated into neuron–like cells with a significantly enhanced expression of neuro–related markers, including Nestin (NES) and β–Tubulin (TUJ1). Proteomics was used to construct protein profiles in neural differentiation, and the results showed that chitosan hydrogels containing metformin promoted the upregulation of neural regeneration–related proteins, including ATP5F1, ATP5J, NADH dehydrogenase (ubiquinone) Fe–S protein 3 (NDUFS3), and Glutamate Dehydrogenase 1 (GLUD1). Our results help to promote the clinical application of stem–cell neural regeneration.
Collapse
Affiliation(s)
- Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shutao Sun
- Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Shiwen Deng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.C.); (T.L.); (W.B.); (S.D.); (X.Z.); (Y.Y.); (Z.X.)
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- Correspondence:
| |
Collapse
|