1
|
Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
3
|
Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone. Molecules 2022; 27:molecules27144531. [PMID: 35889405 PMCID: PMC9316984 DOI: 10.3390/molecules27144531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ozone (O3) is an oxidating tropospheric pollutant. When O3 interacts with biological substrates, reactive oxygen and nitrogen species (RONS) are formed. Severe oxidative damage exhausts the endogenous antioxidant system, which leads to the decreased activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Curcumin (CUR) is a natural polyphenol with well-documented antioxidant and anti-inflammatory properties. The aim of this work is to evaluate the effects of curcumin on CAT, GPx, and SOD activity and the inhibition of oxidative damage after the acute and chronic exposure to O3. Fifty male Wistar rats were divided into five experimental groups: the intact control, CUR-fed control, exposed-to-O3 control, CUR-fed (preventive), and CUR-fed (therapeutic) groups. These two last groups received a CUR-supplemented diet while exposed to O3. These experiments were performed during acute- and chronic-exposure phases. In the preventive and therapeutic groups, the activity of plasma CAT, GPx, and SOD was increased during both exposure phases, with slight differences; concomitantly, lipid peroxidation and protein carbonylation were inhibited. For this reason, we propose that CUR could be used to enhance the activity of the antioxidant system and to diminish the oxidative damage caused by exposure to O3.
Collapse
|
4
|
Bauer G, Sersenová D, Graves DB, Machala Z. Cold Atmospheric Plasma and Plasma-Activated Medium Trigger RONS-Based Tumor Cell Apoptosis. Sci Rep 2019; 9:14210. [PMID: 31578342 PMCID: PMC6775051 DOI: 10.1038/s41598-019-50291-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023] Open
Abstract
The selective in vitro anti-tumor mechanisms of cold atmospheric plasma (CAP) and plasma-activated media (PAM) follow a sequential multi-step process. The first step involves the formation of primary singlet oxygen (1O2) through the complex interaction between NO2− and H2O2.1O2 then inactivates some membrane-associated catalase molecules on at least a few tumor cells. With some molecules of their protective catalase inactivated, these tumor cells allow locally surviving cell-derived, extracellular H2O2 and ONOO─ to form secondary 1O2. These species continue to inactivate catalase on the originally triggered cells and on adjacent cells. At the site of inactivated catalase, cell-generated H2O2 enters the cell via aquaporins, depletes glutathione and thus abrogates the cell’s protection towards lipid peroxidation. Optimal inactivation of catalase then allows efficient apoptosis induction through the HOCl signaling pathway that is finalized by lipid peroxidation. An identical CAP exposure did not result in apoptosis for nonmalignant cells. A key conclusion from these experiments is that tumor cell-generated RONS play the major role in inactivating protective catalase, depleting glutathione and establishing apoptosis-inducing RONS signaling. CAP or PAM exposure only trigger this response by initially inactivating a small percentage of protective membrane associated catalase molecules on tumor cells.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
5
|
Bauer G, Sersenová D, Graves DB, Machala Z. Dynamics of Singlet Oxygen-Triggered, RONS-Based Apoptosis Induction after Treatment of Tumor Cells with Cold Atmospheric Plasma or Plasma-Activated Medium. Sci Rep 2019; 9:13931. [PMID: 31558835 PMCID: PMC6763425 DOI: 10.1038/s41598-019-50329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment of tumor cells with cold atmospheric plasma (CAP) or with plasma-activated medium (PAM) leads to a biochemical imprint on these cells. This imprint is mediated by primary singlet oxygen, which is mainly generated through the interaction between CAP-derived H2O2 and NO2-. This imprint is induced with a low efficiency as local inactivation of a few membrane-associated catalase molecules. As sustained generation of secondary singlet oxygen by the tumor cells is activated at the site of the imprint, a rapid bystander effect-like spreading of secondary singlet oxygen generation and catalase inactivation within the cell population is thus induced. This highly dynamic process is essentially driven by NOX1 and NOS of the tumor cells, and finally leads to intercellular RONS-driven apoptosis induction. This dynamic process can be studied by kinetic analysis, combined with the use of specific inhibitors at defined time intervals. Alternatively, it can be demonstrated and quantified by transfer experiments, where pretreated cells are mixed with untreated cells and bystander signaling is determined. These studies allow to conclude that the specific response of tumor cells to generate secondary singlet oxygen is the essential motor for their self-destruction, after a singlet oxygen-mediated triggering process by CAP or PAM.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
6
|
Bauer G. Intercellular singlet oxygen-mediated bystander signaling triggered by long-lived species of cold atmospheric plasma and plasma-activated medium. Redox Biol 2019; 26:101301. [PMID: 31442912 PMCID: PMC6831840 DOI: 10.1016/j.redox.2019.101301] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Treatment of tumor cells with H2O2 and nitrite, two long-lived species derived from cold atmospheric plasma, induces a complex autoamplificatory, singlet oxygen-mediated process, which leads to catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Experimental dissection and quantification of this process is described in this study. When tumor cells were pretreated with H2O2 and nitrite, and then were added to untreated tumor cells, they propaged singlet oxygen mediated catalase inactivation and generation of singlet oxygen to the untreated cell population. This bystander effect allowed to analyze the biochemical requirements of a) induction of the bystander effect-inducing potential, b) transmission of the bystander effect to untreated neighbouring cells, and c) the biochemical consequences of these signaling events. The induction of bystander effect-inducing potential requires the generation of “primary singlet oxygen” through the reactions following the interaction between nitrite and H2O2, followed by local inactivation of a few catalase molecules. This primary effect seems to be very rare, but is efficiently enhanced by the generation of "secondary singlet oxygen" through the interaction between H2O2 and peroxynitrite at the site of inactivated catalase. Transmission of bystander signaling between pretreated and untreated tumor cells depends on the generation of secondary singlet oxygen by the pretreated cells and singlet oxygen-mediated catalase inactivation of the untreated recipient cells. This induces autoamplificatory propagation of secondary singlet oxygen generation in the population. This experimental approach allowed to quantify the efficiencies of primary and secondary singlet oxgen generation after CAP and PAM action, to dissect the system and to study the underlying chemical biology in detail. Our data confirm that CAP and PAM-derived components are merely the trigger for the activation of autoamplificatory mechanisms of tumor cells, whereas the tumor cells efficiently propagate their cell death through their own ROS/RNS signaling potential. Primary 1O2 generated by H2O2 and NO2─ induces in tumor cells the potential for bystander signaling. Bystander signaling depends on inactivation of membrane-associated catalase. It is propagated by secondary singlet oxgen generated by cell-derived H2O2 and peroxynitrite. The action of primary singlet oxygen is a rare effect. Secondary singlet oxygen is generated in a sustained mode and acts efficiently.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder Str. 11, D-79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
de Ondarza J. Ozone Sensitivity and Catalase Activity in Pigmented and Non-Pigmented Strains of Serratia Marcescens. Open Microbiol J 2017; 11:12-22. [PMID: 28567147 PMCID: PMC5418915 DOI: 10.2174/1874285801711010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection. Serratia marcescens is an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression of Serratia’s virulence genes and defenses is therefore valuable. Objective: Here, we investigated the role of pigmentation and catalase in Serratia marcescens on survival to ozone exposure. Method: Pigmented and non-pigmented strains of Serratia marcescens were cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 – 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion. Results: Exposure of S. marcescens to 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmented Serratia (grown at 28°C) survived ozonation better than unpigmented Serratia (grown at 35°C), non-pigmented mutant strains of Serratia had similar ozone survival rates, catalase activity and H2O2 tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures. Conclusion: Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmented S. marcescens.
Collapse
Affiliation(s)
- José de Ondarza
- Department of Biological Sciences, Plattsburgh State University of New York, NY, USA
| |
Collapse
|
8
|
Muhlisin M, Utama DT, Lee JH, Choi JH, Lee SK. Effects of Gaseous Ozone Exposure on Bacterial Counts and Oxidative Properties in Chicken and Duck Breast Meat. Korean J Food Sci Anim Resour 2016; 36:405-11. [PMID: 27433112 PMCID: PMC4942556 DOI: 10.5851/kosfa.2016.36.3.405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 01/24/2023] Open
Abstract
The effects of gaseous ozone exposure on the bacterial counts and oxidative properties were evaluated in duck and chicken breast fillets, which were stored under a continuous flux of gaseous ozone (10×10(-6) kg O3/m(3)/h) at 4±1℃ for 4 d. The ozone generator was set to on for 15 min and off for 105 min, and this cyclic timer was set during storage. Ozone effectively reduced the growth of coliform, aerobic and anaerobic bacteria in both chicken and duck breast. However, lipid oxidation occurred faster in duck breast than chicken breast with higher degree of discoloration, TBARS value, and antioxidant enzyme (glutathione peroxidase and catalase) activity decline rates. It is concluded that ozone effectively controlled the growth of bacteria in both chicken and duck breast with less effects on oxidative deterioration in chicken breast.
Collapse
Affiliation(s)
- Muhlisin Muhlisin
- Animal Products and Food Science Program, Division of Animal Applied Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dicky Tri Utama
- Animal Products and Food Science Program, Division of Animal Applied Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Ho Lee
- Animal Products and Food Science Program, Division of Animal Applied Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Hye Choi
- Animal Products and Food Science Program, Division of Animal Applied Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung Ki Lee
- Animal Products and Food Science Program, Division of Animal Applied Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
9
|
Muhlisin, Cho Y, Choi JH, Hahn TW, Lee SK. Bacterial Counts and Oxidative Properties of Chicken Breast Inoculated with S
almonella
Typhimurium Exposed to Gaseous Ozone. J Food Saf 2014. [DOI: 10.1111/jfs.12161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Muhlisin
- Department of Animal Products and Food Science; Kangwon National University; Chuncheon 200-701 Korea
| | - Youngjae Cho
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon 200-701 Korea
| | - Ji Hye Choi
- Department of Animal Products and Food Science; Kangwon National University; Chuncheon 200-701 Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon 200-701 Korea
| | - Sung Ki Lee
- Department of Animal Products and Food Science; Kangwon National University; Chuncheon 200-701 Korea
| |
Collapse
|
10
|
Cho Y, Muhlisin, Choi JH, Hahn TW, Lee SK. Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature. Korean J Food Sci Anim Resour 2014; 34:525-32. [PMID: 26761291 PMCID: PMC4662157 DOI: 10.5851/kosfa.2014.34.4.525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023] Open
Abstract
This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (p<0.05) the growths of E. coli O157:H7, total aerobic and anaerobic bacteria in ground beef samples during storage. Ozone exposure reduced (p<0.05) the CIE a* value of samples over storage time. The CIE L* and CIE b* values of the samples fluctuated over storage time, and ozone had no clear effect. Ozone exposure increased the TBARS values during 1 to 3 d of storage (p<0.05). The CAT and GPx enzyme activities were not affected by ozone exposure until 2 and 3 d of storage, respectively. This study provides information about the use of ozone exposure as an antimicrobial agent for meat under refrigerated storage. The results of this study provide a foundation for the further application of ozone exposure by integrating an ozone generator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.
Collapse
Affiliation(s)
- Youngjae Cho
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sung Ki Lee
- Corresponding author: Sung Ki Lee, Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea. Tel: +82-33-250-8646, Fax: +82-33-251-7719, E-mail:
| |
Collapse
|
11
|
Olek RA, Ziolkowski W, Flis DJ, Fedeli D, Fiorini D, Wierzba TH, Gabbianelli R. The effect of ethyl pyruvate supplementation on rat fatty liver induced by a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 2014; 59:232-7. [PMID: 23883694 DOI: 10.3177/jnsv.59.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Continuous positive energy imbalance leads to obesity, which increases the risk of developing non-alcoholic fatty liver disease. The hepatoprotective effect of ethyl pyruvate has been revealed in several studies. Therefore, we examined the effect of ethyl pyruvate supplementation on liver cell damage, metabolism, membrane fluidity, and oxidative stress markers in rats fed a high-fat diet. After 6-wk feeding of a control or high-fat diet, Wistar rats were divided into 4 groups: control diet, control diet and ethyl pyruvate, high-fat diet, and high-fat diet and ethyl pyruvate. Ethyl pyruvate was administered as a 0.3% solution in drinking water, for the following 6 wk. Ethyl pyruvate intake attenuated the increase in activities of plasma transaminases and liver TNF-α. However, the supplementation was without effect in the lipid profiles, membrane fluidity or oxidative metabolism in liver induced by the high-fat diet. Our data confirm the potency of ethyl pyruvate against cell liver damage. Nevertheless, prolonged intake did not affect the development of a fatty liver.
Collapse
Affiliation(s)
- Robert Antoni Olek
- Biochemistry Department, Gdansk University of Physical Education and Sport, Poland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Večeřa J, Krishnan N, Mithöfer A, Vogel H, Kodrík D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:389-95. [PMID: 22085825 DOI: 10.1016/j.cbpc.2011.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022]
Abstract
The antioxidative potential of the Manduca sexta adipokinetic hormone (Manse-AKH) in the last instar larvae of Spodoptera littoralis (Noctuidae, Lepidoptera) was demonstrated after exposure to oxidative stress (OS) elicited by feeding on artificial diet containing tannic acid (TA). Determination of protein carbonyls (PCs) and reduced glutathione (GSH) levels, monitoring of activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferases (GSTs), as well as measuring of the mRNA expression of CAT and SOD were used as markers of the OS. Injection of the Manse-AKH (5 pmol per individual) reversed the OS status by mitigation of PCs formation and by stimulation of glutathione-S-transferases (GSTs) activity. The CAT and SOD mRNA expression was significantly suppressed after the Manse-AKH injection while activity of these enzymes was not affected. These results indicate that diminishing of OS after the AKH injection might be a result of activation of specific enzymatic pathway possibly at the post-translational level rather than a direct effect on regulation of antioxidant marker genes at the transcriptional level.
Collapse
Affiliation(s)
- Josef Večeřa
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, České Budějovice 370 05, Czech Republic
| | | | | | | | | |
Collapse
|
13
|
Rubio V, Valverde M, Rojas E. Effects of atmospheric pollutants on the Nrf2 survival pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:369-82. [PMID: 19367423 DOI: 10.1007/s11356-009-0140-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 02/16/2009] [Indexed: 04/15/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Atmospheric pollution is a worldwide problem. Exposure to atmospheric pollutants causes toxic cellular effects. One of the mechanisms of toxicity by these pollutants is the promotion of oxidative stress. Several signaling pathways control cellular redox homeostasis. In this respect, nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor in the cell's response to oxidative stress. MAIN FEATURES In cellular animal models, exposure to atmospheric pollutants activates Nrf2, attenuating its toxic and even its carcinogenic effects. Therefore, we have reviewed the scientific literature in order to indicate that air pollutants, such as particulate matter, polycyclic aromatic hydrocarbons, and gaseous matter, are Nrf2 pathway inductors, triggering self-defense through the establishment of proinflammatory and antioxidant responses. RESULTS AND DISCUSSION Exposure to reactive molecules as atmospheric pollutants causes the activation of Nrf2 and the subsequent regulation of the expression of cytoprotective and detoxifying enzymes, as well as antioxidants. Moreover, induction of Nrf2 prior to exposure reduces the harmful effects of pollutants. The present article discusses the protective role of the Nrf2 pathway against different atmospheric pollutant insults. CONCLUSIONS Nrf2 regulates the expression of numerous cytoprotective genes that function to detoxify reactive species produced during atmospheric pollutant metabolic reactions. From the papers highlighted in this review, we conclude that Nrf2 has an important role in the defense against atmospheric pollutant-induced toxicity. PERSPECTIVES Further studies are needed to understand the signaling events that turn on the system in response to atmospheric pollutant stress. This could allow for the possibility of targeting the pathway for prevention benefits in the near future.
Collapse
Affiliation(s)
- Valentina Rubio
- Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Universidad Nacional Autónoma de México, México D.F., 04510, Mexico
| | | | | |
Collapse
|
14
|
Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN. Protein oxidation and cellular homeostasis: Emphasis on metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:93-104. [PMID: 17023064 DOI: 10.1016/j.bbamcr.2006.08.039] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are generated as the result of a number of physiological and pathological processes. Once formed ROS can promote multiple forms of oxidative damage, including protein oxidation, and thereby influence the function of a diverse array of cellular processes. This review summarizes the mechanisms by which ROS are generated in a variety of cell types, outlines the mechanisms which control the levels of ROS, and describes specific proteins which are common targets of ROS. Additionally, this review outlines cellular processes which can degrade or repair oxidized proteins, and ultimately describes the potential outcomes of protein oxidation on cellular homeostasis. In particular, this review focuses on the relationship between elevations in protein oxidation and multiple aspects of cellular metabolism. Together, this review describes a potential role for elevated levels of protein oxidation contributing to cellular dysfunction and oxidative stress via impacts on cellular metabolism.
Collapse
Affiliation(s)
- Valentina Cecarini
- Post Graduate School of Clinical Biochemistry, Departments of Molecular and Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
|