1
|
Hsueh SS, Lu JH, Wu JW, Lin TH, Wang SSS. Protection of human γD-crystallin protein from ultraviolet C-induced aggregation by ortho-vanillin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120023. [PMID: 34098480 DOI: 10.1016/j.saa.2021.120023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Cataract is known as one of the leading causes of vision impairment worldwide. While the detailed mechanism of cataratogenesis remains unclear, cataract is believed to be correlated with the aggregation and/or misfolding of human ocular lens proteins called crystallins. A 173-residue structural protein human γD-crystallin is a major γ-crystallin protein in the human eye lens and associated with the development of juvenile and mature-onset cataracts. This work is aimed at investigating the effect of a small molecule, e.g., ortho-vanillin, on human γD-crystallin aggregation upon exposure to ultraviolet-C irradiation. According to the findings of right-angle light scattering, transmission electron microscopy, and gel electrophoresis, ortho-vanillin was demonstrated to dose-dependently suppress ultraviolet-C-triggered aggregation of human γD-crystallin. Results from the synchronous fluorescence spectroscopy, tryptophan fluorescence quenching, and molecular docking studies revealed the structural change of γD-crystallin induced by the interaction/binding between ortho-vanillin and protein. We believe the outcome from this work may contribute to the development of potential therapeutics for cataract.
Collapse
Affiliation(s)
- Shu-Shun Hsueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Hong Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Josephine W Wu
- Department of Optometry, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan.
| | - Ta-Hsien Lin
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Investigating the effect of sugar-terminated nanoparticles on amyloid fibrillogenesis of β-lactoglobulin. Int J Biol Macromol 2020; 165:291-307. [PMID: 32961178 DOI: 10.1016/j.ijbiomac.2020.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
In vivo tissue deposition of fibrillar protein aggregates is the cause of several degenerative diseases. Evidence suggests that interfering with the pathology-associated amyloid fibrillogenesis by inhibitory molecules is envisaged as the primary therapeutic strategy. Amyloid fibril formation of proteins has been demonstrated to be influenced by nanoparticles/nanomaterials. As compared with their molecular form counterpart, this work examined the effect of sucrose-terminated nanoparticles on the in vitro amyloid fibrillogenesis and structural properties of β-lactoglobulin at pH 2.0 and 80 °C. ThT binding and electron microscopy results demonstrated that sucrose-terminated nanoparticles were able to suppress β-lactoglobulin fibrillogenesis in a concentration-dependent fashion. Importantly, sucrose-terminated nanoparticles showed better β-lactoglobulin fibril-inhibiting ability than sucrose molecules. ANS fluorescence and right-angle light scattering results showed reduced solvent exposure and decreased aggregation, respectively, in the β-lactoglobulin samples upon treatment with sucrose-terminated nanoparticles. Moreover, fluorescence quenching analyses revealed that the static quenching mechanism and formation of a non-fluorescent fluorophore-nanoparticle complex are involved in the nanoparticle-β-lactoglobulin interaction. We believe that the results from this study may suggest that the nanoparticle form of biocompatible sugar-related osmolytes may serve as effective inhibiting/suppressing agents toward protein fibrillogenesis.
Collapse
|
3
|
Chaari A. Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil. Int J Biol Macromol 2020; 162:284-300. [PMID: 32569693 DOI: 10.1016/j.ijbiomac.2020.06.170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Loss of β-cell function and β-cell death is the key feature of type 2 diabetes mellitus (T2DM). One hypothesis for the mechanism of this feature is amyloid formation by the human islet amyloid polypeptide (hIAPP). Despite the global prevalence of T2DM, there are no therapeutic strategies for the treatment of or prevention of amylin amyloidosis. Clinical trials and population studies indicate the healthy virtues of the Mediterranean diet, especially the extra virgin olive oil (EVOO) found in this diet. This oil is enriched in phenolic compounds shown to be effective against several aging and lifestyle diseases. Oleuropein (Ole), one of the most abundant polyphenols in EVOO, has been reported to be anti-diabetic. Some of Ole's main derivative have attracted our interest due to their multi-targetted effects, including interference with amyloid aggregation path. However, the structure-function relationship of Ole and its metabolites in T2DM are not yet clear. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which tyrosol (TYR), hydroxytyrosol (HT), oleuropein (Ole) and oleuropein aglycone (OleA) modulate the hIAPP fibrillation in vitro and their effects on cell cytotoxicity. The OleA formed by enolic acid and hydroxytyrosol moiety was found to be more active than the Ole and HT at low micromolar concentrations. We further demonstrated that OleA inhibit the cytotoxicity induced by hIAPP aggregates by protecting more the cell membrane from permeabilization and then from death. These findings highlight the benefits of consuming EVOO and the great potential of its polyphenols, mainly OleA. Moreover, they support the possibility to validate and optimize the possible pharmacological use of EVOO polyphenols for T2DM prevention and therapy and also for many other amyloid related diseases.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Department Weill Cornell Medicine, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
4
|
How SC, Hsin A, Chen GY, Hsu WT, Yang SM, Chou WL, Chou SH, Wang SSS. Exploring the influence of brilliant blue G on amyloid fibril formation of lysozyme. Int J Biol Macromol 2019; 138:37-48. [PMID: 31295491 DOI: 10.1016/j.ijbiomac.2019.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022]
Abstract
Evidence suggests that amyloid fibril mitigation/inhibition is considered a promising approach toward treating amyloid diseases. In this work, we first examined how amyloid fibrillogenesis of lysozyme was affected by BBG, a safe triphenylmethane compound with nice blood-brain-barrier-permeability, and found that shorter fibrillar species were formed in the lysozyme samples treated with BBG. Next, alterations in the features including the secondary as well as tertiary structure, extent of aggregation, and molecular distribution of lysozyme triggered by the addition of BBG were examined by various spectroscopic techniques, right-angle light scattering, dynamic light scattering, and SDS-PAGE. In addition, we have investigated how BBG affected the lysozyme fibril-induced cytotoxicity in SH-SY5Y cells. We found that a large quantity of shorter fibrillar species and more lysozyme monomers were present in the samples treated with BBG. Also, the addition of BBG rescued SH-SY5Y cells from cell death induced by amyloid fibrils of lysozyme. Finally, information about the binding sites and interacting forces involved in the BBG-lysozyme interaction was further explored using synchronous fluorescence and molecular docking approaches. Molecular docking results revealed that, apart from the hydrophobic interaction(s), hydrogen bonding, electrostatic interactions, and van der Waal forces may also be involved in the binding interaction.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ai Hsin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Yu Chen
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City, Taiwan
| | - Wei-Tse Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Ming Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Lung Chou
- Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha Lu, Taichung City 433, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City, Taiwan.
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
5
|
Human islet amyloid polypeptide (hIAPP) aggregation in type 2 diabetes: Correlation between intrinsic physicochemical properties of hIAPP aggregates and their cytotoxicity. Int J Biol Macromol 2019; 136:57-65. [PMID: 31195047 DOI: 10.1016/j.ijbiomac.2019.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 02/07/2023]
Abstract
A large number of pathological diseases are known now to be associated with the misfolding and the aberrant oligomerization and deposition of peptides and proteins into various aggregates. One of these peptides is islet amyloid polypeptide (IAPP), which is responsible for amyloid formation in type 2 diabetes. The mechanism of IAPP amyloid formation in vivo and in vitro is not well understood and the factors behind the peptide aggregates toxicity are not fully defined. Therefore, the precise nature of toxic agents still remains to be elucidated. In this context, first we used a complementary biophysical approach to undertake a systematic study of the hIAPP aggregation process with focus on the lag phase, followed by the study of their degrees of toxicity when added to the extracellular medium of pancreatic cells. The structural properties of hIAPP aggregates are characterized by evaluating their size with DLS, their surface hydrophobicity with ANS, and the interactions between monomers through the intrinsic fluorescence of aromatic residues or by the quenching of these residues mainly the tyrosine in position 37. Our results indicate that despite the method used to study hIAPP aggregation, the obtained curve is easily well fitted in a sigmoidal curve but with some differences. In fact, the analysis of the kinetic parameters gives different information about the hIAPP aggregation process such as lag time and growth rate. Moreover, a high surface hydrophobicity and small size of the aggregates, mainly for the species formed during the lag time, shows strong correlation with the cytotoxicity. These findings provide new insights into the structural changes during hIAPP aggregation and are consistent with a model in which the exposure of hydrophobic surfaces and the small size of aggregates formed during the early stage of the process are crucial for their cytotoxicity.
Collapse
|
6
|
Seal S, Polley S, Sau S. A staphylococcal cyclophilin carries a single domain and unfolds via the formation of an intermediate that preserves cyclosporin A binding activity. PLoS One 2019; 14:e0210771. [PMID: 30925148 PMCID: PMC6440624 DOI: 10.1371/journal.pone.0210771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Cyclophilin (Cyp), a peptidyl-prolyl cis-trans isomerase (PPIase), acts as a virulence factor in many bacteria including Staphylococcus aureus. The enzymatic activity of Cyp is inhibited by cyclosporin A (CsA), an immunosuppressive drug. To precisely determine the unfolding mechanism and the domain structure of Cyp, we have investigated a chimeric S. aureus Cyp (rCyp) using various probes. Our limited proteolysis and the consequent analysis of the proteolytic fragments indicate that rCyp is composed of one domain with a short flexible tail at the C-terminal end. We also show that the urea-induced unfolding of both rCyp and rCyp-CsA is completely reversible and proceeds via the synthesis of at least one stable intermediate. Both the secondary structure and the tertiary structure of each intermediate appears very similar to those of the corresponding native protein. Conversely, the hydrophobic surface areas of the intermediates are comparatively less. Further analyses reveal no loss of CsA binding activity in rCyp intermediate. The thermodynamic stability of rCyp was also significantly increased in the presence of CsA, recommending that this protein could be employed to screen new CsA derivatives in the future.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
7
|
Hu Y, He C, Woo MW, Xiong H, Hu J, Zhao Q. Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance. Food Funct 2019; 10:8106-8115. [DOI: 10.1039/c9fo00961b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Structural characteristics during whey protein isolate fibrils formation and its protease resistance were investigated.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Jiangxi 330047
- China
| | - Chengxin He
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Jiangxi 330047
- China
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering
- Faculty of Engineering
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Jiangxi 330047
- China
| | - Juwu Hu
- Jiangxi Academy of Sciences
- Jiangxi 330029
- China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Jiangxi 330047
- China
| |
Collapse
|
8
|
Nie RZ, Dang MZ, Li KK, Peng JM, Du J, Zhang MY, Li CM. A-type EGCG dimer, a new proanthocyanidins dimer from persimmon fruits, interacts with the amino acid residues of Aβ40 which possessed high aggregation-propensity and strongly inhibits its amyloid fibrils formation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Lu NH, How SC, Lin CY, Tsai SL, Bednarikova Z, Fedunova D, Gazova Z, Wu JW, Wang SSS. Examining the effects of dextran-based polymer-coated nanoparticles on amyloid fibrillogenesis of human insulin. Colloids Surf B Biointerfaces 2018; 172:674-683. [DOI: 10.1016/j.colsurfb.2018.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
|
10
|
Exploring the effects of methylene blue on amyloid fibrillogenesis of lysozyme. Int J Biol Macromol 2018; 119:1059-1067. [DOI: 10.1016/j.ijbiomac.2018.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022]
|
11
|
Li CT, How SC, Chen ME, Lo CH, Chun MC, Chang CK, Chen WA, Wu JW, Wang SSS. Effects of glycation on human γd-crystallin proteins by different glycation-inducing agents. Int J Biol Macromol 2018; 118:442-451. [DOI: 10.1016/j.ijbiomac.2018.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
|
12
|
Chaudhury S, Dutta A, Bag S, Biswas P, Das AK, Dasgupta S. Probing the inhibitory potency of epigallocatechin gallate against human γB-crystallin aggregation: Spectroscopic, microscopic and simulation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:318-327. [PMID: 29172128 DOI: 10.1016/j.saa.2017.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/13/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Aggregation of human ocular lens proteins, the crystallins is believed to be one of the key reasons for age-onset cataract. Previous studies have shown that human γD-crystallin forms amyloid like fibres under conditions of low pH and elevated temperature. In this article, we have investigated the aggregation propensity of human γB-crystallin in absence and presence of epigallocatechin gallate (EGCG), in vitro, when exposed to stressful conditions. We have used different spectroscopic and microscopic techniques to elucidate the inhibitory effect of EGCG towards aggregation. The experimental results have been substantiated by molecular dynamics simulation studies. We have shown that EGCG possesses inhibitory potency against the aggregation of human γB-crystallin at low pH and elevated temperature.
Collapse
Affiliation(s)
| | - Anirudha Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pranandita Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
13
|
Kuo CT, Chen YL, Hsu WT, How SC, Cheng YH, Hsueh SS, Liu HS, Lin TH, Wu JW, Wang SSS. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme. Int J Biol Macromol 2017; 98:159-168. [DOI: 10.1016/j.ijbiomac.2017.01.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
|
14
|
Chaudhury S, Roy P, Dasgupta S. Green tea flavanols protect human γB-crystallin from oxidative photodamage. Biochimie 2017; 137:46-55. [PMID: 28285129 DOI: 10.1016/j.biochi.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
Age related cataract is a major cause of visual loss worldwide that is a result of opacification of the eye lens proteins. One of the major reasons behind this deterioration is UV induced oxidative damage. The study reported here is focused on an investigation of the oxidative stress induced damage to γB-crystallin under UV exposure. Human γB-crystallin has been expressed and purified from E. coli. We have found that epicatechin gallate (ECG) has a higher affinity towards the protein compared to epigallocatechin (EGC). The in vitro study of UV irradiation under oxidative damage to the protein in the presence of increasing concentrations of GTPs is indicative of their effective role as potent inhibitors of oxidative damage. Docking analyses show that the GTPs bind to the cleft between the domains of human γB-crystallin that may be associated with the protection of the protein from oxidative damage.
Collapse
Affiliation(s)
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
15
|
Zeng HJ, Miao M, Liu Z, Yang R, Qu LB. Effect of nitrogen-doped graphene quantum dots on the fibrillation of hen egg-white lysozyme. Int J Biol Macromol 2017; 95:856-861. [DOI: 10.1016/j.ijbiomac.2016.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 01/27/2023]
|
16
|
Fan D, Zhou Q, Liu C, Zhang J. Functional characterization of the Helicobacter pylori chaperone protein HP0795. Microbiol Res 2016; 193:11-19. [PMID: 27825478 DOI: 10.1016/j.micres.2016.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/09/2016] [Accepted: 08/20/2016] [Indexed: 12/12/2022]
Abstract
Trigger factor (TF) is one of the multiple bacterial chaperone proteins interacting with nascent peptides and facilitating their folding in bacteria. While TF is well-characterized in E. coli, HP0795, a TF-like homologue gene identified earlier in the pathogenic Helicobacter pylori (H. pylori), has not been studied biochemically to date. To characterize its function as a chaperone, we performed 3D-modeling, cross-linking and in vitro enzyme assays to HP0795 in vitro. Our results show that HP0795 possesses peptidyl prolyl cis-trans isomerase activity and exhibits a dimeric structure in solution. In addition, stable expression of HP0795 in a series of well-characterized E. coli chaperone-deficient strains rescued the growth defects in these mutants. Furthermore, we showed that the presence of HP0795 greatly reduced protein aggregation caused by deficiencies of chaperones in these strains. In contrast to other chaperone genes in H. pylori, gene expression of HP0795 displays little induction under acidic pH conditions. Together, our results suggest that HP0795 is a constitutively expressed TF-like protein of the prokaryotic chaperone family that may not play a major role in acid response. Given the pathogenic properties of H. pylori, our insights might provide new avenues for potential future medical intervention for H. pylori-related conditions.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China; Beijing CapitalBio MedLab, 88 D2, Branch Six Street, Economic and Technological Development Zone, Beijing 101111, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
17
|
Rathore YS, Dhoke RR, Badmalia M, Sagar A, Ashish. SAXS data based global shape analysis of trigger factor (TF) proteins from E. coli, V. cholerae, and P. frigidicola: resolving the debate on the nature of monomeric and dimeric forms. J Phys Chem B 2015; 119:6101-12. [PMID: 25950744 DOI: 10.1021/acs.jpcb.5b00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimerization of bacterial chaperone trigger factor (TF) is an inherent protein concentration based property which available biophysical characterization and crystal structures have kept debatable. We acquired small-angle X-ray scattering (SAXS) intensity data from different TF homologues from Escherichia coli (ECTF), Vibrio cholerae (VCTF), and Psychrobacter frigidicola (PFTF) while varying each protein concentration. We found that ECTF and VCTF adopt a compact dimeric shape at higher concentrations which did not resemble the "back-to-back" conformation reported earlier for ECTF from crystallography (PDB ID: 1W26 ). In contrast, PFTF remained monomeric throughout the concentration range 2-90 μM displaying a multimodal open extended conformation. OLIGOMER analysis showed that both the ECTF and VCTF remained completely monomeric at lower concentrations (2-11 μM), while, at higher concentrations (60-90 μM), they adopted a dimeric form. Interestingly, the equilibrium existed in the medium concentration range (>11 and <60 μM), which correlates with the physiological concentration (40-50 μM) of TF in cell cytoplasm. Additionally, circular dichroism data revealed that solution structures of ECTF and VCTF contain predominantly α-helical content, while PFTF contains 310-helical content.
Collapse
Affiliation(s)
| | - Reema R Dhoke
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Amin Sagar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
18
|
Mahapa A, Mandal S, Biswas A, Jana B, Polley S, Sau S, Sau K. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end. PLoS One 2015; 10:e0122168. [PMID: 25822635 PMCID: PMC4379015 DOI: 10.1371/journal.pone.0122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (SS); (KS)
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (SS); (KS)
| |
Collapse
|
19
|
Chang CK, Chen WA, Sie CY, Lin SC, Lin LTW, Lin TH, Hsu CC, Wang SSS. Investigating the effects of plasma pretreatment on the formation of ordered aggregates of lysozyme. Colloids Surf B Biointerfaces 2015; 126:154-61. [DOI: 10.1016/j.colsurfb.2014.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
|
20
|
Wu JW, Chen ME, Wen WS, Chen WA, Li CT, Chang CK, Lo CH, Liu HS, Wang SSS. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. PLoS One 2014; 9:e112309. [PMID: 25389780 PMCID: PMC4229192 DOI: 10.1371/journal.pone.0112309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/04/2014] [Indexed: 11/19/2022] Open
Abstract
Cataract, a major cause of visual impairment worldwide, is the opacification of the eye’s crystalline lens due to aggregation of the crystallin proteins. The research reported here is aimed at investigating the aggregating behavior of γ-crystallin proteins in various incubation conditions. Thioflavin T binding assay, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, intrinsic (tryptophan) fluorescence spectroscopy, light scattering, and electron microscopy were used for structural characterization. Molecular dynamics simulations and bioinformatics prediction were performed to gain insights into the γD-crystallin mechanisms of fibrillogenesis. We first demonstrated that, except at pH 7.0 and 37°C, the aggregation of γD-crystallin was observed to be augmented upon incubation, as revealed by turbidity measurements. Next, the types of aggregates (fibrillar or non-fibrillar aggregates) formed under different incubation conditions were identified. We found that, while a variety of non-fibrillar, granular species were detected in the sample incubated under pH 7.0, the fibrillogenesis of human γD-crystallin could be induced by acidic pH (pH 2.0). In addition, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and intrinsic fluorescence spectroscopy were used to characterize the structural and conformational features in different incubation conditions. Our results suggested that incubation under acidic condition led to a considerable change in the secondary structure and an enhancement in solvent-exposure of the hydrophobic regions of human γD-crystallin. Finally, molecular dynamics simulations and bioinformatics prediction were performed to better explain the differences between the structures and/or conformations of the human γD-crystallin samples and to reveal potential key protein region involved in the varied aggregation behavior. Bioinformatics analyses revealed that the initiation of amyloid formation of human γD-crystallin may be associated with a region within the C-terminal domain. We believe the results from this research may contribute to a better understanding of the possible mechanisms underlying the pathogenesis of senile nuclear cataract.
Collapse
Affiliation(s)
- Josephine W. Wu
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
- * E-mail: (JWW); (SSW)
| | - Mei-Er Chen
- Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Sing Wen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-An Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Ting Li
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Kai Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Lo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hwai-Shen Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- * E-mail: (JWW); (SSW)
| |
Collapse
|
21
|
Inhibitor-induced conformational stabilization and structural alteration of a mip-like peptidyl prolyl cis-trans isomerase and its C-terminal domain. PLoS One 2014; 9:e102891. [PMID: 25072141 PMCID: PMC4114562 DOI: 10.1371/journal.pone.0102891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
FKBP22, an Escherichia coli-encoded PPIase (peptidyl-prolyl cis-trans isomerase) enzyme, shares substantial identity with the Mip-like pathogenic factors, caries two domains, exists as a dimer in solution and binds some immunosuppressive drugs (such as FK506 and rapamycin) using its C-terminal domain (CTD). To understand the effects of these drugs on the structure and stability of the Mip-like proteins, rFKBP22 (a chimeric FKBP22) and CTD+ (a CTD variant) have been studied in the presence and absence of rapamycin using different probes. We demonstrated that rapamycin binding causes minor structural alterations of rFKBP22 and CTD+. Both the proteins (equilibrated with rapamycin) were unfolded via the formation of intermediates in the presence of urea. Further study revealed that thermal unfolding of both rFKBP22 and rapamycin-saturated rFKBP22 occurred by a three-state mechanism with the synthesis of intermediates. Intermediate from the rapamycin-equilibrated rFKBP22 was formed at a comparatively higher temperature. All intermediates carried substantial extents of secondary and tertiary structures. Intermediate resulted from the thermal unfolding of rFKBP22 existed as the dimers in solution, carried an increased extent of hydrophobic surface and possessed relatively higher rapamycin binding activity. Despite the formation of intermediates, both the thermal and urea-induced unfolding reactions were reversible in nature. Unfolding studies also indicated the considerable stabilization of both proteins by rapamycin binding. The data suggest that rFKBP22 or CTD+ could be exploited to screen the rapamycin-like inhibitors in the future.
Collapse
|
22
|
Kao CY, Lai JK, Lin TH, Lin YJ, Jan JS, Wang SSS. Examining the inhibitory actions of copolypeptides against amyloid fibrillogenesis of bovine insulin. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Wu JWR, Kao CY, Lin LTW, Wen WS, Lai JT, Wang SSS. Human γD-crystallin aggregation induced by ultraviolet C irradiation is suppressed by resveratrol. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Struvay C, Negro S, Matagne A, Feller G. Energetics of Protein Stability at Extreme Environmental Temperatures in Bacterial Trigger Factors. Biochemistry 2013; 52:2982-90. [DOI: 10.1021/bi4002387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Caroline Struvay
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| | - Sonia Negro
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| | - André Matagne
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| | - Georges Feller
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| |
Collapse
|
25
|
Jana B, Bandhu A, Mondal R, Biswas A, Sau K, Sau S. Domain Structure and Denaturation of a Dimeric Mip-like Peptidyl-Prolyl cis–trans Isomerase from Escherichia coli. Biochemistry 2012; 51:1223-37. [PMID: 22263615 DOI: 10.1021/bi2015037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biswanath Jana
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Amitava Bandhu
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Rajkrishna Mondal
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Keya Sau
- Department
of Biotechnology, Haldia Institute of Technology, PO-HIT, Dt-Purba Medinipur,
Pin 721657, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| |
Collapse
|
26
|
Wen WS, Lai JK, Lin YJ, Lai CM, Huang YC, Wang SSS, Jan JS. Effects of copolypeptides on amyloid fibrillation of hen egg-white lysozyme. Biopolymers 2011; 97:107-16. [DOI: 10.1002/bip.21707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 01/21/2023]
|
27
|
Wang SSS, Hung YT, Wen WS, Lin KC, Chen GY. Exploring the inhibitory activity of short-chain phospholipids against amyloid fibrillogenesis of hen egg-white lysozyme. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:301-13. [DOI: 10.1016/j.bbalip.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/22/2011] [Accepted: 02/04/2011] [Indexed: 01/27/2023]
|
28
|
Wang SSS, Liu KN, Wen WS, Wang P. Fibril Formation of Bovine α-Lactalbumin Is Inhibited by Glutathione. FOOD BIOPHYS 2011. [DOI: 10.1007/s11483-010-9199-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Wang JZ, Lin T, Teng T, Xie SS, Zhu GF, Du LF. Spectroscopic studies on the irreversible heat-induced structural transition of Pin1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:142-147. [PMID: 20934373 DOI: 10.1016/j.saa.2010.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
Previously, the mechanism of the thermal unfolding of Pin1 (on-line measurements) was studied, revealing that Pin1 has a relatively high thermal stability. However, it is still questionable whether the unfolding of Pin1 is reversible. In the present work, intrinsic tryptophan fluorescence, ANS fluorescence, RLS, FTIR and CD spectroscopies are used to evaluate the reversibility of the thermal unfolding of Pin1. Intrinsic tryptophan fluorescence studies indicate that structural changes around tryptophan motifs in Pin1 are possibly reversible after heat treatment (even above 98°C), for no significant change in the intensity or λ(max) of the spectra was observed. ANS fluorescence measurements indicate the irreversible exposure of the hydrophobic clusters in Pin1 after heat treatment at 98°C, with increase in the fluorescence intensity and blue shift in λmax. Also, RLS signals of the Pin1-ANS system increased after heat treatment, possibly implying both the unfolding and the aggregation of Pin1. In addition, FTIR and CD results confirmed the irreversible unfolding of the secondary structure in Pin1 after heat treatment above 90°C, showing decreases in both α-helix and β-sheet. In summary, the present work mainly suggests that heat treatment, especially above 90°C, has an important impact on the structural stability of Pin1, and the structural unfolding induced by heat was proved to be irreversible.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Hung YT, Lin MS, Chen WY, Wang SSS. Investigating the effects of sodium dodecyl sulfate on the aggregative behavior of hen egg-white lysozyme at acidic pH. Colloids Surf B Biointerfaces 2010; 81:141-51. [PMID: 20674294 DOI: 10.1016/j.colsurfb.2010.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 07/03/2010] [Accepted: 07/03/2010] [Indexed: 11/30/2022]
Abstract
The research presented here is aimed at examining the effects of sodium dodecyl sulfate on the aggregative behavior of hen egg-white lysozyme at pH 2.0. Through various spectroscopic techniques, dynamic light scattering, and electron microscopy, we first demonstrated that SDS exhibited a biphasic effect on lysozyme fibrillation. The presence of SDS at higher concentrations (e.g., 0.25, 5.00, or 20.00 mM SDS) was found to suppress fibril formation of lysozyme whereas fibrillogenic lysozyme-SDS ensemble containing beta-sheet-rich conformation was observed upon the addition of lower concentrations of SDS (e.g., 0.00, 0.06, or 0.1mM SDS). Next, our equilibrium urea-unfolding data revealed that lysozyme samples with higher SDS concentrations showed superior thermodynamic stabilities over the ones with no or lower levels of SDS. Finally, the correlation between SDS concentration and lysozyme aggregative/fibrillogenic propensity and the underlying interacting mechanism were further explored using surface tensiometry and isothermal titration calorimetry. We believe the outcome from this work may not only help decipher the molecular mechanism of amyloid fibrillation, but also shed light on a rational design of potential therapeutic strategies for amyloid pathology.
Collapse
Affiliation(s)
- Ying-Tz Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
31
|
Wang SSS, Liu KN, Wang BW. Effects of dithiothreitol on the amyloid fibrillogenesis of hen egg-white lysozyme. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1229-42. [DOI: 10.1007/s00249-010-0576-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 12/03/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
32
|
Koneracká M, Antošová A, Závišová V, Gažová Z, Lancz G, Juríková A, Tomašovčová N, Kováč J, Fabián M, Kopčanský P. Preparation and characterization of albumin containing magnetic fluid as potential drug for amyloid diseases treatment. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.phpro.2010.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Investigating the influences of redox buffer compositions on the amyloid fibrillogenesis of hen egg-white lysozyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1663-72. [DOI: 10.1016/j.bbapap.2009.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/27/2022]
|
34
|
Wang SSS, Chou SW, Liu KN, Wu CH. Effects of glutathione on amyloid fibrillation of hen egg-white lysozyme. Int J Biol Macromol 2009; 45:321-9. [DOI: 10.1016/j.ijbiomac.2009.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
35
|
Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys Chem 2009; 144:78-87. [PMID: 19632028 DOI: 10.1016/j.bpc.2009.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/25/2009] [Accepted: 06/27/2009] [Indexed: 01/15/2023]
Abstract
At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several degenerative diseases. Despite extensive investigation on amyloid fibrillogenesis, its detailed molecular mechanisms remain unknown. This study is aimed at exploring the inhibitory activity of curcumin against the fibrillation of hen lysozyme. We found that the formation of amyloid fibrils at pH 2.0 in vitro was inhibited by curcumin in a dose-dependent manner. Moreover, quenching analysis confirmed the existence of an interaction between curcumin and lysozyme, and Van't Hoff analysis indicated that the curcumin-lysozyme interaction is predominantly governed by Van Der Waals force or hydrogen bonding. Curcumin was also found to acquire disaggregating ability on preformed lysozyme fibrils. Finally, we observed that curcumin pre-incubated at 25 degrees C for at least 7 days inhibited lysozyme fibrillogenesis better than untreated curcumin and the enhanced inhibition against HEWL fibrillation might be attributed to the presence of dimeric species.
Collapse
|
36
|
Fan DJ, Ding YW, Zhou JM. Structural rearrangements and the unfolding mechanism of a Trigger Factor mutant studied by multiple structural probes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:944-52. [DOI: 10.1016/j.bbapap.2009.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
37
|
Lieu VH, Wu JW, Wang SSS, Wu CH. Inhibition of Amyloid Fibrillization of Hen Egg-White Lysozymes by Rifampicin and p-Benzoquinone. Biotechnol Prog 2008; 23:698-706. [PMID: 17492832 DOI: 10.1021/bp060353n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been reported that more than 20 different human proteins can fold abnormally, resulting in the formation of pathological deposits and several lethal degenerative diseases. Despite extensive investigations on amyloid fibril formation, the detailed molecular mechanism remained rather elusive. The current research, utilizing hen egg-white lysozymes as a model system, is aimed at exploring inhibitory activities of two potential molecules against lysozyme fibril formation. We first demonstrated that the formation of lysozyme amyloid fibrils at pH 2.0 was markedly enhanced by the presence of agitation in comparison with its quiescent counterpart. Next, via numerous spectroscopic techniques and transmission electron microscopy, our results revealed that the inhibition of lysozyme amyloid formation by either rifampicin or its analogue p-benzoquinone followed a concentration-dependent fashion. Furthermore, while both inhibitors were shown to acquire an anti-aggregating and a disaggregating activity, rifampicin, in comparison with p-benzoquinone, served as a more effective inhibitor against in vitro amyloid fibrillogenesis of lysozyme. It is our belief that the data reported in this work will not only reinforce the findings validated by others that rifampicin and p-benzoquinone serve as two promising preventive molecules against amyloid fibrillogenesis, but also shed light on a rational design of effective therapeutics for amyloidogenic diseases.
Collapse
Affiliation(s)
- Valerie H Lieu
- Department of Chemical Engineering National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
38
|
Thermal unfolding of Escherichia coli trigger factor studied by ultra-sensitive differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1728-34. [PMID: 18539163 DOI: 10.1016/j.bbapap.2008.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/22/2008] [Accepted: 05/08/2008] [Indexed: 11/22/2022]
Abstract
Temperature-induced unfolding of Escherichia coli trigger factor (TF) and its domain truncation mutants, NM and MC, were studied by ultra-sensitive differential scanning calorimetry (UC-DSC). Detailed thermodynamic analysis showed that thermal induced unfolding of TF and MC involves population of dimeric intermediates. In contrast, the thermal unfolding of the NM mutant involves population of only monomeric states. Covalent cross-linking experiments confirmed the presence of dimeric intermediates during thermal unfolding of TF and MC. These data not only suggest that the dimeric form of TF is extremely resistant to thermal unfolding, but also provide further evidence that the C-terminal domain of TF plays a vital role in forming and stabilizing the dimeric structure of the TF molecule. Since TF is the first molecular chaperone that nascent polypeptides encounter in eubacteria, the stable dimeric intermediates of TF populated during thermal denaturation might be important in responding to stress damage to the cell, such as heat shock.
Collapse
|
39
|
The formation of amyloid fibril-like hen egg-white lysozyme species induced by temperature and urea concentration-dependent denaturation. KOREAN J CHEM ENG 2007. [DOI: 10.1007/s11814-007-0042-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Shi Y, Fan DJ, Li SX, Zhang HJ, Perrett S, Zhou JM. Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor. Protein Sci 2007; 16:1165-75. [PMID: 17525465 PMCID: PMC2206664 DOI: 10.1110/ps.062623707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.
Collapse
Affiliation(s)
- Yi Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|