1
|
Wan T, Zhuo L, Pan Z, Chen RY, Ma H, Cao Y, Wang J, Wang JJ, Hu WF, Lai YJ, Hayat M, Li YZ. Dosage constraint of the ribosome-associated molecular chaperone drives the evolution and fates of its duplicates in bacteria. mBio 2024; 15:e0199424. [PMID: 39373534 PMCID: PMC11559001 DOI: 10.1128/mbio.01994-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Rui-yun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Han Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
3
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
4
|
Choudhury M, Dhara A, Kumar M. Trigger Factor in Association with the ClpP1P2 Heterocomplex of Leptospira Promotes Protease/Peptidase Activity. ACS OMEGA 2021; 6:1400-1409. [PMID: 33490799 PMCID: PMC7818586 DOI: 10.1021/acsomega.0c05057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
The genomic analysis of Leptospira reveals a trigger factor (TF) encoding gene (tig) to be colocalized along with the clpP1 and clpX. The TF is a crouching dragon-like protein known to be a ribosome-associated chaperone that is involved in cotranslational protein folding in bacteria in an ATP-independent mode. In Leptospira, tig is localized upstream of the clpP1 with a short (4 bp) overlap. In the present study, we document the distinctive role of Leptospira TF (LinTF) in the caseinolytic protease (ClpP) system. The recombinant LinTF (rLinTF) was found to improve the peptidase or protease activity of the ClpP1P2 heterocomplex and ClpXP1P2 complex, respectively, on model substrates. In addition, on supplementation of rLinTF to rClpP1P2 bound to its physiological ATPase chaperone ClpX or the antibiotic analogue acyldepsipeptide (ADEP), an augmentation in the activity of ClpP1P2 was observed. These studies underscore the novel role of LinTF in aiding the caseinolytic protease activity of Leptospira. Supplementation of rLinTF to a peptidase assay of rClpP1P2 conditionally in the presence of a salt (sodium citrate) with high Hofmeister strength led us to speculate that rLinTF may have a role in the assembly of multimeric proteins. The deletion of one of the arms (arm-2) of the LinTF structure from the carboxy terminal domain indicated a reduction in its capacity to stimulate rClpP1P2 activity. Thus, the C-terminal domain of LinTF may have a role in the assembly of multimeric ClpP protein, leading to enhancement of ClpP activity.
Collapse
Affiliation(s)
| | | | - Manish Kumar
- . Phone: +91-361-258-2230. Fax: +91-361-258-2249
| |
Collapse
|
5
|
Fan D, Cao S, Zhou Q, Zhang Y, Yue L, Han C, Yang B, Wang Y, Ma Z, Zhu L, Liu C. Exploring the roles of substrate-binding surface of the chaperone site in the chaperone activity of trigger factor. FASEB J 2018; 32:fj201701576. [PMID: 29906241 DOI: 10.1096/fj.201701576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Trigger factor (TF) is a key component of the prokaryotic chaperone network, which is involved in many basic cellular processes, such as protein folding, protein trafficking, and ribosome assembly. The major chaperone site of TF has a cradle-like structure in which protein substrate may fold without interference from other proteins. Here, we investigated in vivo and in vitro the roles of hydrophobic and charged patches on the edge and interior of cradle during TF-assisted protein folding. Our results showed that most of the surface of the cradle was involved in TF-assisted protein folding, which was larger than found in early studies. Although the inner surface of cradle was mostly hydrophobic, both hydrophobic and electrostatic patches were indispensable for TF to facilitate correct protein folding. However, hydrophobic patches were more important for the antiaggregation activity of TF. Furthermore, it was found that the patches on the surface of cradle were involved in TF-assisted protein folding in a spatial and temporal order. These results suggest that the folding-favorable interface between the cradle and substrate was dynamic during TF-assisted protein folding, which enabled TF to be involved in the folding of substrate in an aggressive manner rather than acting as a classic holdase.-Fan, D., Cao, S., Zhou, Q., Zhang, Y., Yue, L., Han, C., Yang, B., Wang, Y., Ma, Z., Zhu, L., Liu, C. Exploring the roles of substrate-binding surface of chaperone site in the chaperone activity of trigger factor.
Collapse
Affiliation(s)
- Dongjie Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shunan Cao
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China, Shanghai, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- ChosenMed Technology Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, China
| | - You Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Bo Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Morgado L, Burmann BM, Sharpe T, Mazur A, Hiller S. The dynamic dimer structure of the chaperone Trigger Factor. Nat Commun 2017; 8:1992. [PMID: 29222465 PMCID: PMC5722895 DOI: 10.1038/s41467-017-02196-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/12/2017] [Indexed: 11/09/2022] Open
Abstract
The chaperone Trigger Factor (TF) from Escherichia coli forms a dimer at cellular concentrations. While the monomer structure of TF is well known, the spatial arrangement of this dimeric chaperone storage form has remained unclear. Here, we determine its structure by a combination of high-resolution NMR spectroscopy and biophysical methods. TF forms a symmetric head-to-tail dimer, where the ribosome binding domain is in contact with the substrate binding domain, while the peptidyl-prolyl isomerase domain contributes only slightly to the dimer affinity. The dimer structure is highly dynamic, with the two ribosome binding domains populating a conformational ensemble in the center. These dynamics result from intermolecular in trans interactions of the TF client-binding site with the ribosome binding domain, which is conformationally frustrated in the absence of the ribosome. The avidity in the dimer structure explains how the dimeric state of TF can be monomerized also by weakly interacting clients.
Collapse
Affiliation(s)
- Leonor Morgado
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.,Department of Chemistry and Molecular Biology, Wallenberg Centre of Molecular and Translational Medicine, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Adam Mazur
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| |
Collapse
|
7
|
Yang F, Chen TY, Krzemiński Ł, Santiago AG, Jung W, Chen P. Single-molecule dynamics of the molecular chaperone trigger factor in living cells. Mol Microbiol 2016; 102:992-1003. [PMID: 27626893 DOI: 10.1111/mmi.13529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Indexed: 01/20/2023]
Abstract
In bacteria, trigger factor (TF) is the molecular chaperone that interacts with the ribosome to assist the folding of nascent polypeptides. Studies in vitro have provided insights into the function and mechanism of TF. Much is to be elucidated, however, about how TF functions in vivo. Here, we use single-molecule tracking, in combination with genetic manipulations, to study the dynamics and function of TF in living E. coli cells. We find that TF, besides interacting with the 70S ribosome, may also bind to ribosomal subunits and form TF-polypeptide complexes that may include DnaK/DnaJ proteins. The TF-70S ribosome interactions are highly dynamic inside cells, with an average residence time of ∼0.2 s. Our results confirm that the signal recognition particle weakens TF's interaction with the 70S ribosome, and further identify that this weakening mainly results from a change in TF's binding to the 70S ribosome, rather than its unbinding. Moreover, using photoconvertible bimolecular fluorescence complementation, we selectively probe TF2 dimers in the cell and show that TF2 does not bind to the 70S ribosome but is involved in the post-translational interactions with polypeptides. These findings contribute to the fundamental understanding of molecular chaperones in assisting protein folding in living cells.
Collapse
Affiliation(s)
- Feng Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Tai-Yen Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Łukasz Krzemiński
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ace George Santiago
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
9
|
Rathore YS, Dhoke RR, Badmalia M, Sagar A, Ashish. SAXS data based global shape analysis of trigger factor (TF) proteins from E. coli, V. cholerae, and P. frigidicola: resolving the debate on the nature of monomeric and dimeric forms. J Phys Chem B 2015; 119:6101-12. [PMID: 25950744 DOI: 10.1021/acs.jpcb.5b00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimerization of bacterial chaperone trigger factor (TF) is an inherent protein concentration based property which available biophysical characterization and crystal structures have kept debatable. We acquired small-angle X-ray scattering (SAXS) intensity data from different TF homologues from Escherichia coli (ECTF), Vibrio cholerae (VCTF), and Psychrobacter frigidicola (PFTF) while varying each protein concentration. We found that ECTF and VCTF adopt a compact dimeric shape at higher concentrations which did not resemble the "back-to-back" conformation reported earlier for ECTF from crystallography (PDB ID: 1W26 ). In contrast, PFTF remained monomeric throughout the concentration range 2-90 μM displaying a multimodal open extended conformation. OLIGOMER analysis showed that both the ECTF and VCTF remained completely monomeric at lower concentrations (2-11 μM), while, at higher concentrations (60-90 μM), they adopted a dimeric form. Interestingly, the equilibrium existed in the medium concentration range (>11 and <60 μM), which correlates with the physiological concentration (40-50 μM) of TF in cell cytoplasm. Additionally, circular dichroism data revealed that solution structures of ECTF and VCTF contain predominantly α-helical content, while PFTF contains 310-helical content.
Collapse
Affiliation(s)
| | - Reema R Dhoke
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Amin Sagar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
10
|
Shi Y, Shinjo M, Zhou JM, Kihara H. Structural stability of E. coli trigger factor studied by synchrotron small-angle X-ray scattering. Biophys Chem 2014; 195:1-7. [PMID: 25133354 DOI: 10.1016/j.bpc.2014.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
Solution small-angle X-ray scattering (SAXS) is an effective technique for quantitatively measuring the compactness and shape of proteins. We use SAXS to study the structural characteristics and unfolding transitions induced by urea for full length Escherichia coli trigger factor (TF) and a series of truncation mutants, obtaining and comparing the radiuses of gyration (Rg), the distance-distribution function (P(r) function) and integrated intensity of TF variants in native and unfolding states. The C-terminal 72-residue truncated mutant TF360 exhibited dramatic structural differences and reduced stability compared with the whole TF molecule, while the N-domain truncated mutant MC maintained its compact structure with reduced stability. These results indicate that the C-terminal region of TF plays an important role in the structural and conformational stabilities of the TF molecule, while the N-domain is relatively independent.
Collapse
Affiliation(s)
- Yi Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China.
| | - Masaji Shinjo
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata 573-1010, Japan
| | - Jun-Mei Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Hiroshi Kihara
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata 573-1010, Japan.
| |
Collapse
|
11
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
12
|
Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger Factor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:650-61. [PMID: 20132842 DOI: 10.1016/j.bbamcr.2010.01.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/22/2010] [Indexed: 01/16/2023]
Abstract
Newly synthesized proteins often require the assistance of molecular chaperones to efficiently fold into functional three-dimensional structures. At first, ribosome-associated chaperones guide the initial folding steps and protect growing polypeptide chains from misfolding and aggregation. After that folding into the native structure may occur spontaneously or require support by additional chaperones which do not bind to the ribosome such as DnaK and GroEL. Here we review the current knowledge on the best-characterized ribosome-associated chaperone at present, the Escherichia coli Trigger Factor. We describe recent progress on structural and dynamic aspects of Trigger Factor's interactions with the ribosome and substrates and discuss how these interactions affect co-translational protein folding. In addition, we discuss the newly proposed ribosome-independent function of Trigger Factor as assembly factor of multi-subunit protein complexes. Finally, we cover the functional cooperation between Trigger Factor, DnaK and GroEL in folding of cytosolic proteins and the interplay between Trigger Factor and other ribosome-associated factors acting in enzymatic processing and translocation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Anja Hoffmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Fan DJ, Ding YW, Zhou JM. Structural rearrangements and the unfolding mechanism of a Trigger Factor mutant studied by multiple structural probes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:944-52. [DOI: 10.1016/j.bbapap.2009.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
14
|
Trigger factor from the psychrophilic bacterium Psychrobacter frigidicola is a monomeric chaperone. J Bacteriol 2008; 191:1162-8. [PMID: 19060145 DOI: 10.1128/jb.01137-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eubacteria, trigger factor (TF) is the first chaperone to interact with newly synthesized polypeptides and assist their folding as they emerge from the ribosome. We report the first characterization of a TF from a psychrophilic organism. TF from Psychrobacter frigidicola (TF(Pf)) was cloned, produced in Escherichia coli, and purified. Strikingly, cross-linking and fluorescence anisotropy analyses revealed it to exist in solution as a monomer, unlike the well-characterized, dimeric E. coli TF (TF(Ec)). Moreover, TF(Pf) did not exhibit the downturn in reactivation of unfolded GAPDH (glyceraldehyde-3-phosphate dehydrogenase) that is observed with its E. coli counterpart, even at high TF/GAPDH molar ratios and revealed dramatically reduced retardation of membrane translocation by a model recombinant protein compared to the E. coli chaperone. TF(Pf) was also significantly more effective than TF(Ec) at increasing the yield of soluble and functional recombinant protein in a cell-free protein synthesis system, indicating that it is not dependent on downstream systems for its chaperoning activity. We propose that TF(Pf) differs from TF(Ec) in its quaternary structure and chaperone activity, and we discuss the potential significance of these differences in its native environment.
Collapse
|
15
|
Thermal unfolding of Escherichia coli trigger factor studied by ultra-sensitive differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1728-34. [PMID: 18539163 DOI: 10.1016/j.bbapap.2008.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/22/2008] [Accepted: 05/08/2008] [Indexed: 11/22/2022]
Abstract
Temperature-induced unfolding of Escherichia coli trigger factor (TF) and its domain truncation mutants, NM and MC, were studied by ultra-sensitive differential scanning calorimetry (UC-DSC). Detailed thermodynamic analysis showed that thermal induced unfolding of TF and MC involves population of dimeric intermediates. In contrast, the thermal unfolding of the NM mutant involves population of only monomeric states. Covalent cross-linking experiments confirmed the presence of dimeric intermediates during thermal unfolding of TF and MC. These data not only suggest that the dimeric form of TF is extremely resistant to thermal unfolding, but also provide further evidence that the C-terminal domain of TF plays a vital role in forming and stabilizing the dimeric structure of the TF molecule. Since TF is the first molecular chaperone that nascent polypeptides encounter in eubacteria, the stable dimeric intermediates of TF populated during thermal denaturation might be important in responding to stress damage to the cell, such as heat shock.
Collapse
|
16
|
Shi Y, Fan DJ, Li SX, Zhang HJ, Perrett S, Zhou JM. Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor. Protein Sci 2007; 16:1165-75. [PMID: 17525465 PMCID: PMC2206664 DOI: 10.1110/ps.062623707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.
Collapse
Affiliation(s)
- Yi Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|