1
|
Huang SC, Chen CW, Satange R, Hsieh CC, Chang CC, Wang SC, Peng CL, Chen TL, Chiang MH, Horng YC, Hou MH. Targeting DNA junction sites by bis-intercalators induces topological changes with potent antitumor effects. Nucleic Acids Res 2024; 52:9303-9316. [PMID: 39036959 PMCID: PMC11347135 DOI: 10.1093/nar/gkae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Targeting inter-duplex junctions in catenated DNA with bidirectional bis-intercalators is a potential strategy for enhancing anticancer effects. In this study, we used d(CGTATACG)2, which forms a tetraplex base-pair junction that resembles the DNA-DNA contact structure, as a model target for two alkyl-linked diaminoacridine bis-intercalators, DA4 and DA5. Cross-linking of the junction site by the bis-intercalators induced substantial structural changes in the DNA, transforming it from a B-form helical end-to-end junction to an over-wounded side-by-side inter-duplex conformation with A-DNA characteristics and curvature. These structural perturbations facilitated the angled intercalation of DA4 and DA5 with propeller geometry into two adjacent duplexes. The addition of a single carbon to the DA5 linker caused a bend that aligned its chromophores with CpG sites, enabling continuous stacking and specific water-mediated interactions at the inter-duplex contacts. Furthermore, we have shown that the different topological changes induced by DA4 and DA5 lead to the inhibition of topoisomerase 2 activities, which may account for their antitumor effects. Thus, this study lays the foundations for bis-intercalators targeting biologically relevant DNA-DNA contact structures for anticancer drug development.
Collapse
Affiliation(s)
- Shih-Chun Huang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Wei Chen
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Chih-Chun Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Li Peng
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Tai-Lin Chen
- Post Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Velay F, Méteignier LV, Laloi C. You shall not pass! A Chromatin barrier story in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:888102. [PMID: 36212303 PMCID: PMC9540200 DOI: 10.3389/fpls.2022.888102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
As in other eukaryotes, the plant genome is functionally organized in two mutually exclusive chromatin fractions, a gene-rich and transcriptionally active euchromatin, and a gene-poor, repeat-rich, and transcriptionally silent heterochromatin. In Drosophila and humans, the molecular mechanisms by which euchromatin is preserved from heterochromatin spreading have been extensively studied, leading to the identification of insulator DNA elements and associated chromatin factors (insulator proteins), which form boundaries between chromatin domains with antagonistic features. In contrast, the identity of factors assuring such a barrier function remains largely elusive in plants. Nevertheless, several genomic elements and associated protein factors have recently been shown to regulate the spreading of chromatin marks across their natural boundaries in plants. In this minireview, we focus on recent findings that describe the spreading of chromatin and propose avenues to improve the understanding of how plant chromatin architecture and transitions between different chromatin domains are defined.
Collapse
Affiliation(s)
- Florent Velay
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| | - Louis-Valentin Méteignier
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Christophe Laloi
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| |
Collapse
|
3
|
Martinez-Garcia M, White CI, Franklin FCH, Sanchez-Moran E. The Role of Topoisomerase II in DNA Repair and Recombination in Arabidopsis thaliana. Int J Mol Sci 2021; 22:13115. [PMID: 34884922 PMCID: PMC8658145 DOI: 10.3390/ijms222313115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.
Collapse
Affiliation(s)
| | - Charles I. White
- Génétique, Reproduction et Développement, Faculté de Médecine, UMR CNRS 6293—INSERM U1103—Université Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France;
| | | | | |
Collapse
|
4
|
Aspidosperma subincanum I. characterisation, extraction of an uleine-enriched fraction and potential health hazard due to the contaminant ellipticine. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Siwek A, Bielawska A, Maciorkowska E, Lepiarczyk M, Bielawski K, Trotsko N, Wujec M. Cytotoxicity and topoisomerase I/II inhibition activity of novel 4-aryl/alkyl-1-(piperidin-4-yl)-carbonylthiosemicarbazides and 4-benzoylthiosemicarbazides. J Enzyme Inhib Med Chem 2013; 29:243-8. [DOI: 10.3109/14756366.2013.768987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Agata Siwek
- Department of Organic Chemistry, Medical University
LublinPoland
| | | | | | | | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University
BialystokPoland
| | - Nazar Trotsko
- Department of Organic Chemistry, Medical University
LublinPoland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University
LublinPoland
| |
Collapse
|
6
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Timsit Y. Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 2011; 39:8665-76. [PMID: 21764774 PMCID: PMC3203592 DOI: 10.1093/nar/gkr556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that control the topology and higher order structures of DNA. Type IIA enzymes have the remarkable property to sense locally the global DNA topology. Although many theoretical models have been proposed, the molecular mechanism of chiral discrimination is still unclear. While experimental studies have established that topoisomerases IIA discriminate topology on the basis of crossover geometry, a recent single-molecule experiment has shown that the enzyme has a different processivity on supercoiled DNA of opposite sign. Understanding how cross-over geometry influences enzyme processivity is, therefore, the key to elucidate the mechanism of chiral discrimination. Analysing this question from the DNA side reveals first, that the different stability of chiral DNA cross-overs provides a way to locally sense the global DNA topology. Second, it shows that these enzymes have evolved to recognize the G- and T-segments stably assembled into a right-handed cross-over. Third, it demonstrates how binding right-handed cross-overs across their large angle imposes a different topological link between the topoIIA rings and the plectonemes of opposite sign thus directly affecting the enzyme freedom of motion and processivity. In bridging geometry and kinetic data, this study brings a simple solution for type IIA topoisomerase chiral discrimination.
Collapse
Affiliation(s)
- Youri Timsit
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
8
|
Rampakakis E, Gkogkas C, Di Paola D, Zannis-Hadjopoulos M. Replication initiation and DNA topology: The twisted life of the origin. J Cell Biochem 2010; 110:35-43. [PMID: 20213762 DOI: 10.1002/jcb.22557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic propagation in both prokaryotes and eukaryotes is tightly regulated at the level of initiation, ensuring that the genome is accurately replicated and equally segregated to the daughter cells. Even though replication origins and the proteins that bind onto them (initiator proteins) have diverged throughout the course of evolution, the mechanism of initiation has been conserved, consisting of origin recognition, multi-protein complex assembly, helicase activation and loading of the replicative machinery. Recruitment of the multiprotein initiation complexes onto the replication origins is constrained by the dense packing of the DNA within the nucleus and unusual structures such as knots and supercoils. In this review, we focus on the DNA topological barriers that the multi-protein complexes have to overcome in order to access the replication origins and how the topological state of the origins changes during origin firing. Recent advances in the available methodologies to study DNA topology and their clinical significance are also discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Goodman Cancer Centre, Department of Biochemistry, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
9
|
Cho SJ, Chen X. Myosin VI is differentially regulated by DNA damage in p53- and cell type-dependent manners. J Biol Chem 2010; 285:27159-27166. [PMID: 20576604 DOI: 10.1074/jbc.m110.142117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VI is an unconventional motor protein and functions in a variety of intracellular processes such as cell migration, vesicular trafficking, and homeostasis of the Golgi complex. Previously, we found that myosin VI is up-regulated in RKO, LS174T, and H1299 cells by DNA damage in a p53-dependent manner and mediates the pro-survival function of p53. Here, we showed that the levels of myosin VI protein were markedly inhibited in MCF7 and LNCaP cells by topoisomerase I-II inhibitors. However, the levels of myosin VI transcript were decreased only by topoisomerase I inhibitors. We also found that the levels of myosin VI protein were markedly inhibited in MCF7 cells by wild-type p53 but not tumor-derived mutant p53. Surprisingly, we found that the level of myosin VI transcript was slightly increased instead of decreased in MCF7 cells by p53, suggesting that a mechanism other than transcriptional repression is involved. Additionally, we found that on the myosin VI promoter, the level of acetylated histone H3 was markedly decreased, whereas that of p53 and acetylated histone H4 was slightly increased in MCF7 cells upon treatment with topoisomerase I-II inhibitors. Finally, we showed that overexpression of myosin VI enhances, whereas knockdown of myosin VI decreases, DNA damage-induced stabilization of p53, and consequently, knockdown of myosin VI de-sensitizes MCF7 cells to DNA damage-induced apoptosis. Taken together, as a mediator of the p53 pro-survival pathway and a marker of malignancy in some tumors, differential regulation of myosin VI in various tumor cells by topoisomerase inhibitors dictates whether knockdown of myosin VI inhibits, rather than enhances, the susceptibility of tumor cells to some therapeutic agents, which might be explored for designing a proper therapeutic strategy.
Collapse
Affiliation(s)
- Seong Jun Cho
- Comparative Cancer Center, Department of Surgical and Radiological Sciences, University of California, Davis, California 95616
| | - Xinbin Chen
- Comparative Cancer Center, Department of Surgical and Radiological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
10
|
Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood 2008; 112:3383-90. [PMID: 18650449 DOI: 10.1182/blood-2007-10-115600] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Therapy-related acute promyelocytic leukemia (t-APL) with t(15;17) translocation is a well-recognized complication of cancer treatment with agents targeting topoisomerase II. However, cases are emerging after mitoxantrone therapy for multiple sclerosis (MS). Analysis of 12 cases of mitoxantrone-related t-APL in MS patients revealed an altered distribution of chromosome 15 breakpoints versus de novo APL, biased toward disruption within PML intron 6 (11 of 12, 92% vs 622 of 1022, 61%: P = .035). Despite this intron spanning approximately 1 kb, breakpoints in 5 mitoxantrone-treated patients fell within an 8-bp region (1482-9) corresponding to the "hotspot" previously reported in t-APL, complicating mitoxantrone-containing breast cancer therapy. Another shared breakpoint was identified within the approximately 17-kb RARA intron 2 involving 2 t-APL cases arising after mitoxantrone treatment for MS and breast cancer, respectively. Analysis of PML and RARA genomic breakpoints in functional assays in 4 cases, including the shared RARA intron 2 breakpoint at 14 446-49, confirmed each to be preferential sites of topoisomerase IIalpha-mediated DNA cleavage in the presence of mitoxantrone. This study further supports the presence of preferential sites of DNA damage induced by mitoxantrone in PML and RARA genes that may underlie the propensity to develop this subtype of leukemia after exposure to this agent.
Collapse
|
11
|
Masliah G, René B, Zargarian L, Fermandjian S, Mauffret O. Identification of intrinsic dynamics in a DNA sequence preferentially cleaved by topoisomerase II enzyme. J Mol Biol 2008; 381:692-706. [PMID: 18585388 DOI: 10.1016/j.jmb.2008.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/03/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
Topoisomerase II enzymes are essential enzymes that modulate DNA topology and play a role in chromatin compaction. While these enzymes appear to recognize and cleave the DNA in a nonrandom fashion, factors that underlie enzyme specificity remain an enigma. To gain new insights on these topics, we undertake, using NMR and molecular dynamics methods, studies of the structural and dynamic features of a 21 bp DNA segment preferentially cleaved by topoisomerases II. The large size of the oligonucleotide did not hamper the determination of structures of sufficient quality, and numerous interesting correlations between helicoidal parameters already depicted in crystals and molecular dynamics simulations are recovered here. The main feature of the sequence is the occurrence of a large opening of the base pairs in a four-residue AT-rich region located immediately at the 5' end of one of the cleaved sites. This opening seems to be largely dependent on sequence context, since a similar opening is not found in the other AT base pairs of the sequence. Furthermore, two adenine nucleotides of the same portion of the oligonucleotide present slow internal motions at the NMR timescale, revealing particular base dynamics. In conclusion, this AT-rich region presents the most salient character in the sequence and could be involved in the preferential cleavage by topoisomerase II. The examination of preferred sites in the literature pointed out the frequent occurrence of AT-rich sequences, namely matrix attachment region and scaffold attachment region sequences, at the sites cleaved by topoisomerase II. We could infer that the particular flexibility of these sequences plays an important role in enabling the formation of a competent cleavage complex. The sequences could then be selected based on their facility to undertake conformational change during the complex formation, rather than purely based on binding affinity.
Collapse
Affiliation(s)
- Grégoire Masliah
- LBPA, Centre National de la Recherche Scientifique (UMR8113), Ecole Normale Supérieure de Cachan, F-94235 Cachan, France
| | | | | | | | | |
Collapse
|