1
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
2
|
Contribution of n-3 Long-Chain Polyunsaturated Fatty Acids to the Prevention of Breast Cancer Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137936. [PMID: 35805595 PMCID: PMC9265492 DOI: 10.3390/ijerph19137936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, diet and breast cancer are studied at different levels, particularly in tumor prevention and progression. Thus, the molecular mechanisms leading to better knowledge are deciphered with a higher precision. Among the molecules implicated in a preventive and anti-progressive way, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) are good candidates. These molecules, like docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are generally found in marine material, such as fat fishes or microalgae. EPA and DHA act as anti-proliferative, anti-invasive, and anti-angiogenic molecules in breast cancer cell lines, as well as in in vivo studies. A better characterization of the cellular and molecular pathways involving the action of these fatty acids is essential to have a realistic image of the therapeutic avenues envisaged behind their use. This need is reinforced by the increase in the number of clinical trials involving more and more n-3 LC-PUFAs, and this, in various pathologies ranging from obesity to a multitude of cancers. The objective of this review is, therefore, to highlight the new elements showing the preventive and beneficial effects of n-3 LC-PUFAs against the development and progression of breast cancer.
Collapse
|
3
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
4
|
Butler LM, Mah CY, Machiels J, Vincent AD, Irani S, Mutuku SM, Spotbeen X, Bagadi M, Waltregny D, Moldovan M, Dehairs J, Vanderhoydonc F, Bloch K, Das R, Stahl J, Kench JG, Gevaert T, Derua R, Waelkens E, Nassar ZD, Selth LA, Trim PJ, Snel MF, Lynn DJ, Tilley WD, Horvath LG, Centenera MM, Swinnen JV. Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition. Cancer Res 2021; 81:4981-4993. [PMID: 34362796 DOI: 10.1158/0008-5472.can-20-3863] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues (n=21), independent unmatched tissues (n=47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide (n=43). Significant differences in lipid composition were detected and spatially visualized in tumors compared to matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This first characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Lisa M Butler
- South Australian Health and Medical Research Institute, University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health
| | - Chui Yan Mah
- South Australian Health and Medical Research Institute, University of Adelaide, Freemasons Foundation Centre for Men's Health and Adelaide Medical School
| | | | | | - Swati Irani
- South Australian Health and Medical Research Institute, University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health
| | - Shadrack M Mutuku
- South Australian Health and Medical Research Institute, University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health
| | | | | | | | - Max Moldovan
- Registry of Older Australians, South Australian Health and Medical Research Institute
| | - Jonas Dehairs
- Department of Oncology, KU Leuven - University of Leuven
| | | | - Katarzyna Bloch
- Department of Hematology and Oncology, Familial Cancer Program, Dartmouth–Hitchcock Medical Center
| | | | | | - James G Kench
- Tissue Pathology & Diagnostic Oncology, Royal Prince Alfred Hospital
| | | | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven
| | | | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University
| | - Paul J Trim
- Proteomics, Metabolomics and MS Imaging Core Facility, South Australian Health & Medical Research Institute
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health & Medical Research Institute
| | - David J Lynn
- Precision Medicine, South Australian Health and Medical Research Institute
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide
| | - Lisa G Horvath
- Cancer Research Program, Garvan Institute of Medical Research
| | | | | |
Collapse
|
5
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
6
|
Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. Mar Drugs 2020; 18:md18120612. [PMID: 33271856 PMCID: PMC7760700 DOI: 10.3390/md18120612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.
Collapse
|
7
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
8
|
Zhu X, Li S, Liu L, Li S, Luo Y, Lv C, Wang B, Cheng CHK, Chen H, Yang X. Genome Sequencing and Analysis of Thraustochytriidae sp. SZU445 Provides Novel Insights into the Polyunsaturated Fatty Acid Biosynthesis Pathway. Mar Drugs 2020; 18:md18020118. [PMID: 32085426 PMCID: PMC7073664 DOI: 10.3390/md18020118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Thraustochytriidae sp. have broadly gained attention as a prospective resource for the production of omega-3 fatty acids production in significant quantities. In this study, the whole genome of Thraustochytriidae sp. SZU445, which produces high levels of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA), was sequenced and subjected to protein annotation. The obtained clean reads (63.55 Mb in total) were assembled into 54 contigs and 25 scaffolds, with maximum and minimum lengths of 400 and 0.0054 Mb, respectively. A total of 3513 genes (24.84%) were identified, which could be classified into six pathways and 44 pathway groups, of which 68 genes (1.93%) were involved in lipid metabolism. In the Gene Ontology database, 22,436 genes were annotated as cellular component (8579 genes, 38.24%), molecular function (5236 genes, 23.34%), and biological process (8621 genes, 38.42%). Four enzymes corresponding to the classic fatty acid synthase (FAS) pathway and three enzymes corresponding to the classic polyketide synthase (PKS) pathway were identified in Thraustochytriidae sp. SZU445. Although PKS pathway-associated dehydratase and isomerase enzymes were not detected in Thraustochytriidae sp. SZU445, a putative DHA- and DPA-specific fatty acid pathway was identified.
Collapse
Affiliation(s)
- Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Siting Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
| | - Boyu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Christopher H. K. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (X.Z.); (S.L.); (L.L.); (S.L.); (Y.L.); (C.L.); (B.W.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
- Correspondence:
| |
Collapse
|
9
|
Leslie TK, James AD, Zaccagna F, Grist JT, Deen S, Kennerley A, Riemer F, Kaggie JD, Gallagher FA, Gilbert FJ, Brackenbury WJ. Sodium homeostasis in the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2019; 1872:188304. [PMID: 31348974 PMCID: PMC7115894 DOI: 10.1016/j.bbcan.2019.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the cell's ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Andrew D James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Aneurin Kennerley
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
10
|
Cam A, Oyirifi AB, Liu Y, Haschek WM, Iwaniec UT, Turner RT, Engeseth NJ, Helferich WG. Thermally Abused Frying Oil Potentiates Metastasis to Lung in a Murine Model of Late-Stage Breast Cancer. Cancer Prev Res (Phila) 2019; 12:201-210. [PMID: 30885926 DOI: 10.1158/1940-6207.capr-18-0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
Deep-frying is a popular form of food preparation used globally and throughout in the United States. Each time dietary oils are heated to deep-frying temperatures, they undergo chemical alterations that result in a new matrix of lipid structures. These lipid products include triglyceride dimers, polymers, oxidized triglycerides, and cyclic monomers, which raises nutritional concerns about associations between these lipid products and heightened health risks. Reports of associations between thermally abused frying oil and deleterious health outcomes currently exist, yet there is little information concerning the effects of thermally abused frying oil consumption and the progression of breast cancer. This study used a late-stage breast cancer murine model and in vivo bioluminescent imaging to monitor progression of metastasis of 4T1 tumor cells in animals consuming fresh soybean oil (SBO) and a thermally abused frying oil (TAFO). Bioluminescent and histologic examinations demonstrated that TAFO consumption resulted in a marked increase of metastatic lung tumor formation compared to SBO consumption. Further, in animals consuming the TAFO treatment diet, metastatic tumors in the lung displayed a 1.4-fold increase in the Ki-67 marker of cellular proliferation and RNA-sequencing analysis of the hepatic tissue revealed a dietary-induced modulation of gene expression in the liver.
Collapse
Affiliation(s)
- Anthony Cam
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - Ashley B Oyirifi
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - Yunxian Liu
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - Wanda M Haschek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Illinois
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Russell T Turner
- Skeletal Biology Laboratory, Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Nicki J Engeseth
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Illinois.
| |
Collapse
|
11
|
Protective Effects of ω-3 PUFA in Anthracycline-Induced Cardiotoxicity: A Critical Review. Int J Mol Sci 2017; 18:ijms18122689. [PMID: 29231904 PMCID: PMC5751291 DOI: 10.3390/ijms18122689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that ω-3 polyunsaturated fatty acids (ω-3 PUFA) may exert a beneficial role as adjuvants in the prevention and treatment of many disorders, including cardiovascular diseases and cancer. Particularly, several in vitro and in vivo preclinical studies have shown the antitumor activity of ω-3 PUFA in different kinds of cancers, and several human studies have shown that ω-3 PUFA are able to decrease the risk of a series of cardiovascular diseases. Several mechanisms have been proposed to explain their pleiotropic beneficial effects. ω-3 PUFA have also been shown to prevent harmful side-effects (including cardiotoxicity and heart failure) induced by conventional and innovative anti-cancer drugs in both animals and patients. The available literature regarding the possible protective effects of ω-3 PUFA against anthracycline-induced cardiotoxicity, as well as the mechanisms involved, will be critically discussed herein. The study will analyze the critical role of different levels of ω-3 PUFA intake in determining the results of the combinatory studies with anthracyclines. Suggestions for future research will also be considered.
Collapse
|
12
|
Rhana P, Trivelato RR, Beirão PSL, Cruz JS, Rodrigues ALP. Is there a role for voltage-gated Na+ channels in the aggressiveness of breast cancer? ACTA ACUST UNITED AC 2017; 50:e6011. [PMID: 28591378 PMCID: PMC5463531 DOI: 10.1590/1414-431x20176011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus, the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. Ion channels are known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently, voltage-gated Na+ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness. To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2+, have been proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to reduce aggressiveness and the disease progress.
Collapse
Affiliation(s)
- P Rhana
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil.,Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R R Trivelato
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| | - P S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - J S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A L P Rodrigues
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| |
Collapse
|
13
|
Dumas JF, Brisson L, Chevalier S, Mahéo K, Fromont G, Moussata D, Besson P, Roger S. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Semin Cancer Biol 2017; 43:90-110. [DOI: 10.1016/j.semcancer.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
|
14
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
15
|
Kones R, Howell S, Rumana U. n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: Principles, Practices, Pitfalls, and Promises - A Contemporary Review. Med Princ Pract 2017; 26:497-508. [PMID: 29186721 PMCID: PMC5848472 DOI: 10.1159/000485837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Amidst voluminous literature, inconsistencies and opposing results have confused rather than clarified cardiologists' ability to assess the potential benefits of n-3 polyunsaturated fatty acids (n-3 PUFA). In perspective, there are common themes that emerge from n-3 PUFA studies, even as imperfect as they may be. The approach taken was to identify and unite these themes into a manageable, cohesive, evidence-based, yet useful synthesis. In all reviews and meta-analyses, the selection of component studies and assumptions influences outcomes. This overarching principle must be combined with the totality of the data, particularly when evidence is incompletely understood and gaps in knowledge must be bridged. Both the older literature and the most recent rigorous meta-analyses indicate that n-3 PUFA are highly pleiotropic agents with many documented positive physiological effects. Concordance among preclinical, observational, randomized clinical trials and meta-analyses is impressive. These agents have modest, statistically significant benefits which accrue over time. Given their favorable safety profile, a risk reduction of about 10% justifies their potential use in cardiovascular disease.
Collapse
Affiliation(s)
- Richard Kones
- The Cardiometabolic Research Institute, Texas, USA
- *Richard Kones MD, FAHA, FESC, FRSM, FCCP, FAGS, FRSH, FRSB, Cardiometabolic Research Institute, 8181 Fannin Street, Building 3, Unit 314, Houston, TX 77054-2913 (USA), E-Mail
| | - Scott Howell
- Department of Medicine, BMU School of Medicine, Winston-Salem, North Carolina, USA
| | - Umme Rumana
- The Cardiometabolic Research Institute, Texas, USA
- University of Texas Health Science Center Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Mohammed FH, Khajah MA, Yang M, Brackenbury WJ, Luqmani YA. Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells. Int J Oncol 2015; 48:73-83. [PMID: 26718772 PMCID: PMC4734602 DOI: 10.3892/ijo.2015.3239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated Na+ channels (VGSCs) are membrane proteins which are normally expressed in excitable cells but have also been detected in cancer cells, where they are thought to be involved in malignancy progression. In this study we examined the ion current and expression profile of VGSC (Nav1.5) in estrogen receptor (ER)-positive (MCF-7) and silenced (pII) breast cancer cells and its possible influence on their proliferation, motility and invasion. VGSC currents were analysed by whole cell patch clamp recording. Nav1.5 expression and localization, in response to EGF stimulation, was examined by western blotting and immunofluorescence respectively. Cell invasion (under-agarose and Matrigel assays), motility (wound healing assay) and proliferation (MTT assay) were assessed in pII cells in response to VGSC blockers, phenytoin (PHT) and tetrodotoxin (TTX), or by siRNA knockdown of Nav1.5. The effect of PHT and TTX on modulating EGF-induced phosphorylation of Akt and ERK1/2 was determined by western blotting. Total matrix metalloproteinase (MMP) was determined using a fluorometric-based activity assay. The level of various human proteases was detected by using proteome profiler array kit. VGSC currents were detected in pII cells, but were absent in MCF-7. Nav1.5 showed cytoplasmic and perinuclear expression in both MCF-7 and pII cells, with enhanced expression upon EGF stimulation. Treatment of pII cells with PHT, TTX or siRNA significantly reduced invasion towards serum components and EGF, in part through reduction of P-ERK1/2 and proteases such as cathepsin E, kallikrein-10 and MMP-7, as well as total MMP activity. At high concentrations, PHT inhibited motility while TTX reduced cell proliferation. Pharmacological or genetic blockade of Nav1.5 may serve as a potential anti-metastatic therapy for breast cancer.
Collapse
Affiliation(s)
| | | | - Ming Yang
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | | | | |
Collapse
|
17
|
Roger S, Gillet L, Le Guennec JY, Besson P. Voltage-gated sodium channels and cancer: is excitability their primary role? Front Pharmacol 2015; 6:152. [PMID: 26283962 PMCID: PMC4518325 DOI: 10.3389/fphar.2015.00152] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaV) are molecular characteristics of excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons and muscle cells. Sodium currents were discovered by Hodgkin and Huxley using the voltage clamp technique and reported in their landmark series of papers in 1952. It was only in the 1980's that sodium channel proteins from excitable membranes were molecularly characterized by Catterall and his collaborators. Non-excitable cells can also express NaV channels in physiological conditions as well as in pathological conditions. These NaV channels can sustain biological roles that are not related to the generation of action potentials. Interestingly, it is likely that the abnormal expression of NaV in pathological tissues can reflect the re-expression of a fetal phenotype. This is especially true in epithelial cancer cells for which these channels have been identified and sodium currents recorded, while it was not the case for cells from the cognate normal tissues. In cancers, the functional activity of NaV appeared to be involved in regulating the proliferative, migrative, and invasive properties of cells. This review is aimed at addressing the non-excitable roles of NaV channels with a specific emphasis in the regulation of cancer cell biology.
Collapse
Affiliation(s)
- Sébastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours Tours, France ; Département de Physiologie Animale, UFR Sciences and Techniques, Université François-Rabelais de Tours Tours, France
| | - Ludovic Gillet
- Department of Clinical Research, University of Bern Bern, Switzerland
| | | | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours Tours, France
| |
Collapse
|
18
|
Blanckaert V, Kerviel V, Lépinay A, Joubert-Durigneux V, Hondermarck H, Chénais B. Docosahexaenoic acid inhibits the invasion of MDA-MB-231 breast cancer cells through upregulation of cytokeratin-1. Int J Oncol 2015; 46:2649-55. [PMID: 25825023 DOI: 10.3892/ijo.2015.2936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
Docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family, has been shown to reduce the invasion of the triple-negative breast cancer cell line MDA-MB-231, but the mechanism involved remains unclear. In the present study, a proteomic approach was used to define changes in protein expression induced by DHA. Proteins from crude membrane preparations of MDA-MB-231 cells treated with 100 µM DHA were separated by two-dimensional electrophoresis (2-DE) and differentially expressed proteins were identified using MALDI-TOF mass spectrometry. The main changes observed were the upregulation of Keratin, type Ⅱ cytoskeletal 1 (KRT1), catalase and lamin-A/C. Immunocytochemistry analyses confirmed the increase in KRT1 induced by DHA. Furthermore, in vitro invasion assays showed that siRNA against KRT1 was able to reverse the DHA-induced inhibition of breast cancer cell invasion. In conclusion, KRT1 is involved in the anti-invasive activity of DHA in breast cancer cells.
Collapse
Affiliation(s)
- Vincent Blanckaert
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| | - Vincent Kerviel
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| | - Alexandra Lépinay
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| | | | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benoît Chénais
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| |
Collapse
|
19
|
Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Perez-Caballero AI, Perez-Jimenez F, Lopez-Miranda J. Mediterranean Diet and Cardiovascular Risk: Beyond Traditional Risk Factors. Crit Rev Food Sci Nutr 2014; 56:788-801. [DOI: 10.1080/10408398.2012.726660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Moore MR, King RA. Effects of omega-3 fatty acids on progestin stimulation of invasive properties in breast cancer. Discov Oncol 2012; 3:205-17. [PMID: 22833172 DOI: 10.1007/s12672-012-0118-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/11/2012] [Indexed: 12/16/2022] Open
Abstract
Clinical studies have shown that progestins increase breast cancer risk in hormone replacement therapy, while we and others have previously reported that progestins stimulate invasive properties in progesterone receptor (PR)-rich human breast cancer cell lines. Based on others' reports that omega-3 fatty acids inhibit metastatic properties of breast cancer, we have reviewed the literature for possible connections between omega-3 fatty-acid-driven pathways and progestin-stimulated pathways in an attempt to suggest theoretical mechanisms for possible omega-3 fatty acid inhibition of progestin stimulation of breast cancer invasion. We also present some data suggesting that fatty acids regulate progestin stimulation of invasive properties in PR-rich T47D human breast cancer cells, and that an appropriate concentration of the omega-3 fatty acid eicosapentaenoic acid inhibits progestin stimulation of invasive properties. It is hoped that focus on the inter-relationship between pathways by which omega-3 fatty acids inhibit and progestins stimulate breast cancer invasive properties will lead to further in vitro, in vivo, and clinical studies testing the hypothesis that omega-3 fatty acids can inhibit progestin stimulation of invasive properties in breast cancer, and ameliorate harmful effects of progestins which occur in combined progestin-estrogen hormone replacement therapy.
Collapse
Affiliation(s)
- Michael R Moore
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive BBSC, Huntington, WV 25755, USA.
| | | |
Collapse
|
21
|
The janus face of lipids in human breast cancer: how polyunsaturated Fatty acids affect tumor cell hallmarks. Int J Breast Cancer 2012; 2012:712536. [PMID: 22811918 PMCID: PMC3395128 DOI: 10.1155/2012/712536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022] Open
Abstract
For several years, lipids and especially n - 3 and n - 6 polyunsaturated fatty acids (PUFAs) receive much attention in human health. Epidemiological studies tend to correlate a PUFA-rich diet with a reduced incidence of cancer, including breast cancer. However, the molecular and cellular mechanisms supporting the effect of PUFAs in breast cancer cells remain relatively unknown. Here, we review some recent progress in understanding the impact that PUFA may have on breast cancer cell proliferation, apoptosis, migration, and invasion. While most of the results obtained with docosahexaenoic acid and/or eicosapentaenoic acid show a decrease of tumor cell proliferation and/or aggressivity, there is some evidence that other lipids, which accumulate in breast cancer tissues, such as arachidonic acid may have opposite effects. Finally, lipids and especially PUFAs appear as potential adjuvants to conventional cancer therapy.
Collapse
|
22
|
Chemical–Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells After Omega-3 PUFA Incorporation. Cell Biochem Biophys 2012; 64:45-59. [DOI: 10.1007/s12013-012-9365-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Abstract
Introduction: Cardiovascular disease remains the commonest health problem in developed countries, and residual risk after implementing all current therapies is still high. The use of marine omega-3 fatty acids (DHA and EPA) has been recommended to reduce cardiovascular risk by multiple mechanisms. Objectives: To update the current evidence on the influence of omega-3 on the rate of cardiovascular events. Review Methods: We used the MEDLINE and EMBASE databases to identify clinical trials and randomized controlled trials of omega-3 fatty acids (with quantified quantities) either in capsules or in dietary intake, compared to placebo or usual diet, equal to or longer than 6 months, and written in English. The primary outcome was a cardiovascular event of any kind and secondary outcomes were all-cause mortality, cardiac death and coronary events. We used RevMan 5·1 (Mantel-Haenszel method). Heterogeneity was assessed by the I2and Chi2tests. We included 21 of the 452 pre-selected studies. Results: We found an overall decrease of risk of suffering a cardiovascular event of any kind of 10 % (OR 0·90; [0·85–0·96],p = 0·001), a 9 % decrease of risk of cardiac death (OR 0·91; [0·83–0·99];p = 0·03), a decrease of coronary events (fatal and non-fatal) of 18 % (OR 0·82; [0·75–0·90];p < 1 × 10− 4), and a trend to lower total mortality (5 % reduction of risk; OR 0·95; [0·89–1·02];p = 0·15. Most of the studies analyzed included persons with high cardiovascular risk. Conclusions: marine omega-3 fatty acids are effective in preventing cardiovascular events, cardiac death and coronary events, especially in persons with high cardiovascular risk.
Collapse
|
24
|
Affiliation(s)
- C.I. Onwulata
- USDA-ARS Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| |
Collapse
|
25
|
|
26
|
Mamtani M, Kulkarni H. Association of HADHA expression with the risk of breast cancer: targeted subset analysis and meta-analysis of microarray data. BMC Res Notes 2012; 5:25. [PMID: 22240105 PMCID: PMC3271971 DOI: 10.1186/1756-0500-5-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/12/2012] [Indexed: 12/13/2022] Open
Abstract
Background The role of n-3 fatty acids in prevention of breast cancer is well recognized, but the underlying molecular mechanisms are still unclear. In view of the growing need for early detection of breast cancer, Graham et al. (2010) studied the microarray gene expression in histologically normal epithelium of subjects with or without breast cancer. We conducted a secondary analysis of this dataset with a focus on the genes (n = 47) involved in fat and lipid metabolism. We used stepwise multivariate logistic regression analyses, volcano plots and false discovery rates for association analyses. We also conducted meta-analyses of other microarray studies using random effects models for three outcomes--risk of breast cancer (380 breast cancer patients and 240 normal subjects), risk of metastasis (430 metastatic compared to 1104 non-metastatic breast cancers) and risk of recurrence (484 recurring versus 890 non-recurring breast cancers). Results The HADHA gene [hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit] was significantly under-expressed in breast cancer; more so in those with estrogen receptor-negative status. Our meta-analysis showed an 18.4%-26% reduction in HADHA expression in breast cancer. Also, there was an inconclusive but consistent under-expression of HADHA in subjects with metastatic and recurring breast cancers. Conclusions Involvement of mitochondria and the mitochondrial trifunctional protein (encoded by HADHA gene) in breast carcinogenesis is known. Our results lend additional support to the possibility of this involvement. Further, our results suggest that targeted subset analysis of large genome-based datasets can provide interesting association signals.
Collapse
|
27
|
Yang T, Lu Z, Meng L, Wei S, Hong K, Zhu W, Huang C. The novel agent ophiobolin O induces apoptosis and cell cycle arrest of MCF-7 cells through activation of MAPK signaling pathways. Bioorg Med Chem Lett 2011; 22:579-85. [PMID: 22130129 DOI: 10.1016/j.bmcl.2011.10.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/02/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
Ophiobolin O is a natural compound that has been isolated from Aspergillus ustus 094102. This is the first study to demonstrate the anti-proliferative effect of ophiobolin O in human breast cancer MCF-7 cells. The results of present study show that ophiobolin O induced cycle G(0)/G(1) phase arrest in MCF-7 cells using a cell cycle analysis. In addition, we demonstrated that ophiobolin O reduced the viability of human breast cancer MCF-7 cells in a time- and dose-dependent manner and efficiently induced apoptosis in MCF-7 cells using the Annexin V/PI binding assay. Ophiobolin O also caused the activation of JNK (c-Jun NH(2)-terminal kinase), p38 MAPK (mitogen activated protein kinase) and ERK (extracellular signal-regulated kinase) as well as the degradation of Bcl-2 phosphorylation (Ser70). Bax protein expression was not changed in ophiobolin O-treated cells. Taken together, ophiobolin O may be considered as a novel therapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang H, Khor TO, Saw CLL, Lin W, Wu T, Huang Y, Kong ANT. Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid. Mol Pharm 2010; 7:2185-93. [PMID: 20831192 DOI: 10.1021/mp100199m] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study is to investigate the role of Nrf2 in suppressing LPS-mediated inflammation in ex vivo macrophages by polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Primary peritoneal macrophages from Nrf2 wild-type (+/+; WT) and Nrf2 knockout (-/-; KO) mice were treated with lipopolysaccharides (LPS) in the presence or absence of DHA or EPA. Quantitative real-time PCR (qPCR) analyses showed that LPS potently induced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the macrophages collected from Nrf2 (+/+) wild-type mice. DHA and EPA inhibited LPS-induced COX-2, iNOS, IL-1β, IL-6, or TNF-α, but increased hemeoxygenase (HO-1) expression. DHA was found to be more potent than EPA in inhibiting COX-2, iNOS, IL-1β, IL-6, and TNF-α mRNA expression. DHA and EPA were also found to induce HO-1 and Nrf2 mRNA with a different dose-response. LPS induced COX-2, iNOS, IL-1β, IL-6, and TNF-α in the macrophages collected from Nrf2 (-/-) mice as well, however, DHA and EPA suppression of COX-2, iNOS, IL-1β, IL-6, and TNF-α was attenuated as compared to that in Nrf2 (+/+) macrophages. Taken together, using Western blotting, ELISA and qPCR approaches coupled with Nrf2 (-/-) mice, our study clearly shows for the first time that DHA/EPA would induce Nrf2 signaling pathway and that Nrf2 plays a role in DHA/EPA suppression of LPS-induced inflammation.
Collapse
Affiliation(s)
- Hu Wang
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|