1
|
Li T, Zheng C, Xu H, Ning Q, Sun Q, Yu R, Cui D, Wang K. Development and optimization of a frequency mixing sensor for adjacent samples quantitative detection on a lateral flow assay. Biotechnol J 2024; 19:e2300190. [PMID: 37985409 DOI: 10.1002/biot.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Frequency-mixing technology has been widely used to precisely identify magnetic nanoparticles in applications of quantitative biomedical detection in recent years. Examples include immune adsorption, lateral flow assays (LFAs), and biomagnetic imaging. However, the signals of magnetic response generated by adjacent magnetic samples interfere with each other owing to the small spacing between them in applications involving multi-sample detection (such as the LFA and multiplexing detection). Such signal interference prevents the biosensor from obtaining characteristic peaks related to the concentration of adjacent biomarkers from the magnetic response signals. Mathematical and physical models of the structure of sensors based on frequency-mixing techniques were developed. The theoretical model was verified and its key parameters were optimized by using simulations. A new frequency-mixing magnetic sensor structure was then designed and developed based on the model, and the key technical problem of signal crosstalk between adjacent samples was structurally solved. Finally, standard cards with stable magnetic properties were used to evaluate the performance of the sensor, and strips of the gastrin-17 (G-17) LFA were used to evaluate its potential for use in clinical applications. The results show that the minimum spacing between samples required by the optimized sensor to accurately identify them was only about 4-5 mm, and the minimum detectable concentration of G-17 was 11 pg mL-1 . This is a significant reduction in the required spacing between samples for multiplexing detection. The optimized sensor also has the potential for use in multi-channel synchronous signal acquisition, and can be used to detect synchronous magnetic signals in vivo.
Collapse
Affiliation(s)
- Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Chujun Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, China
| |
Collapse
|
2
|
Li T, Wang K, Zheng C, Zheng W, Cheng Y, Ning Q, Xu H, Cui D. Magnetic frequency mixing technological advances for the practical improvement of point-of-care testing. Biotechnol Bioeng 2021; 119:347-360. [PMID: 34859425 DOI: 10.1002/bit.28005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
Nanomaterials, especially superparamagnetic nanomaterials, have recently played essential roles in point-of-care testing due to their intrinsic magnetic, electrochemical, and optical properties. The inherent superparamagnetism of magnetic nanoparticles makes them highly sensitive for quantitative detection. Among the various magnetic detection technologies, frequency mixing technology (FMT) technology is an emerging detection technique in the nanomedical field. FMT sensors have high potential for development in the field of biomedical quantitative detection due to their simple structure, and they are not limited to the materials used. In particular, they can be applied for large-scale disease screening, early tumor marker detection, and low-dose drug detection. This review summarizes the principles of FMT and recent advances in the fields of immunoadsorption, lateral flow assay detection, magnetic imaging, and magnetic nanoparticles recognition. The advantages and limitations of FMT sensors for robust, ultrasensitive biosensing are highlighted. Finally, the future requirements and challenges in the development of this technology are described. This review provides further insights for researchers to inspire the future development of FMT by integration into biosensing and devices with a broad field of applications in analytical sensing and clinical usage.
Collapse
Affiliation(s)
- Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Chujun Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Wei Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Hao Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| |
Collapse
|
3
|
Mamot A, Sikorski PJ, Siekierska A, de Witte P, Kowalska J, Jemielity J. Ethylenediamine derivatives efficiently react with oxidized RNA 3' ends providing access to mono and dually labelled RNA probes for enzymatic assays and in vivo translation. Nucleic Acids Res 2021; 50:e3. [PMID: 34591964 PMCID: PMC8755103 DOI: 10.1093/nar/gkab867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Development of RNA-based technologies relies on the ability to detect, manipulate, and modify RNA. Efficient, selective and scalable covalent modification of long RNA molecules remains a challenge. We report a chemical method for modification of RNA 3′-end based on previously unrecognized superior reactivity of N-substituted ethylenediamines in reductive amination of periodate-oxidized RNA. Using this method, we obtained fluorescently labelled or biotinylated RNAs varying in length (from 3 to 2000 nt) and carrying different 5′ ends (including m7G cap) in high yields (70–100% by HPLC). The method is scalable (up to sub-milligrams of mRNA) and combined with label-facilitated HPLC purification yields highly homogeneous products. The combination of 3′-end labelling with 5′-end labelling by strain-promoted azide-alkyne cycloaddition (SPAAC) afforded a one-pot protocol for site-specific RNA bifunctionalization, providing access to two-colour fluorescent RNA probes. These probes exhibited fluorescence resonance energy transfer (FRET), which enabled real-time monitoring of several RNA hydrolase activities (RNase A, RNase T1, RNase R, Dcp1/2, and RNase H). Dually labelled mRNAs were efficiently translated in cultured cells and in zebrafish embryos, which combined with their detectability by fluorescent methods and scalability of the synthesis, opens new avenues for the investigation of mRNA metabolism and the fate of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Adam Mamot
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Li D, Gössringer M, Hartmann RK. Archaeal-bacterial chimeric RNase P RNAs: towards understanding RNA's architecture, function and evolution. Chembiochem 2011; 12:1536-43. [PMID: 21574237 DOI: 10.1002/cbic.201100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Indexed: 01/18/2023]
Abstract
The higher protein content of archaeal RNase P (1 RNA+4 proteins) compared to the bacterial homologue (1 RNA+1 protein) correlates with a large loss of RNA-alone activity (i.e., in the absence of protein cofactors). Here we show, for the first time, that a catalytic (C) domain of an archaeal RNase P RNA (P RNA) can functionally replace the Escherichia coli C domain in a chimeric P RNA, to provide the essential RNase P function in E. coli cells. This adaptation was achieved by 1) three minor alterations in the archaeal C domain, 2) restoration of the L9-P1 interdomain contact that is found in bacterial and archaeal type A RNAs, and 3) installation of another interdomain contact (L18-P8) that is present in bacterial but absent in archaeal P RNAs. We conclude 1) that the C domains of bacterial and archaeal P RNAs of type A have been largely conserved since the evolutionary separation of bacteria and archaea, and 2) that the L18-P8 RNA-RNA contact has been replaced with protein-protein contacts in archaeal RNase P. Function of the chimeric P RNA in E. coli required overexpression of the E. coli RNase P protein to increase the RNA's reduced cellular levels; this was attributed to enhanced degradation of the chimeric P RNA.
Collapse
Affiliation(s)
- Dan Li
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | |
Collapse
|