1
|
Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 2018; 120:187-197. [PMID: 29730517 DOI: 10.1016/j.micpath.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Collapse
Affiliation(s)
- Farghama Khalil
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Yueyu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Naiyan
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liu Di
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wang Hengbo
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Saeed Rauf
- University College of Agriculture, University of Sargodha, Pakistan
| | - Chen Pinghua
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; GMOs LAB of Quality Supervision Inspection &Testing Center for Sugarcane and Derived Products, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Ramesh SV, Pappu HR. Sequence characterization, molecular phylogeny reconstruction and recombination analysis of the large RNA of Tomato spotted wilt virus (Tospovirus: Bunyaviridae) from the United States. BMC Res Notes 2016; 9:200. [PMID: 27038777 PMCID: PMC4818514 DOI: 10.1186/s13104-016-1999-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/21/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tomato spotted wilt virus (TSWV; Tospovirus: Bunyaviridae) has been an economically important virus in the USA for over 30 years. However the complete sequence of only one TSWV isolate PA01 characterized from pepper in Pennsylvania is available. RESULTS The large (L) RNA of a TSWV WA-USA isolate was cloned and sequenced. It consisted of 8914 nucleotides (nt) encoding a single open reading frame of 8640 nts in the viral-complementary sense. The ORF potentially codes for RNA-dependent RNA polymerase (RdRp) of 330.9 kDa. Two untranslated regions of 241 and 33 nucleotides were present at the 5' and 3' termini, respectively that shared conserved tospoviral sequences. Phylogenetic analysis using nucleotide sequences of the complete L RNA showed that TSWV WA-USA isolate clustered with the American and Asian TSWV isolates which formed a distinct clade from Euro-Asiatic Tospoviruses. Phylogeny of the amino acid sequence of all tospoviral RdRps used in this study showed that all the known TSWV isolates including the USA isolate described in this study formed a distinct and a close cluster with that of Impateins necrotic spot virus. Multiple sequence alignment revealed conserved motifs in the RdRp of TSWV. Recombination analysis identified two recombinants including the TSWV WA-USA isolate. Among them, three recombination events were detected in the conserved motifs of the RdRp. CONCLUSIONS Sequence analysis and phylogenetic analysis of the L RNA showed distinct clustering with selected TSWV isolates reported from elsewhere. Conserved motifs in the core polymerase region of the RdRp and recombination events were identified.
Collapse
Affiliation(s)
- Shunmugiah V. Ramesh
- />Department of Plant Pathology, Washington State University, 123 Vogel Plant BiologicalSciences, Pullman, WA 99164 USA
- />ICAR-Directorate of Soybean Research, Khandwa Road, Indore, 452 001 Madhya Pradesh India
| | - Hanu R. Pappu
- />Department of Plant Pathology, Washington State University, 123 Vogel Plant BiologicalSciences, Pullman, WA 99164 USA
| |
Collapse
|
3
|
ElSayed AI, Komor E, Boulila M, Viswanathan R, Odero DC. Biology and management of sugarcane yellow leaf virus: an historical overview. Arch Virol 2015; 160:2921-2934. [PMID: 26424197 DOI: 10.1007/s00705-015-2618-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/17/2015] [Indexed: 02/05/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is one of the most widespread viruses causing disease in sugarcane worldwide. The virus has been responsible for drastic economic losses in most sugarcane-growing regions and remains a major concern for sugarcane breeders. Infection with SCYLV results in intense yellowing of the midrib, which extends to the leaf blade, followed by tissue necrosis from the leaf tip towards the leaf base. Such symptomatic leaves are usually characterized by increased respiration, reduced photosynthesis, a change in the ratio of hexose to sucrose, and an increase in starch content. SCYLV infection affects carbon assimilation and metabolism in sugarcane, resulting in stunted plants in severe cases. SCYLV is mainly propagated by planting cuttings from infected stalks. Phylogenetic analysis has confirmed the worldwide distribution of at least eight SCYLV genotypes (BRA, CHN1, CHN3, CUB, HAW, IND, PER, and REU). Evidence of recombination has been found in the SCYLV genome, which contains potential recombination signals in ORF1/2 and ORF5. This shows that recombination plays an important role in the evolution of SCYLV.
Collapse
Affiliation(s)
- Abdelaleim Ismail ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA.
| | - Ewald Komor
- Plant Physiology, University Bayreuth, 95440, Bayreuth, Germany
| | - Moncef Boulila
- Institut de l'Olivier, B.P. 14, 4061, Sousse Ibn-khaldoun, Tunisia
| | - Rasappa Viswanathan
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, 641007, India
| | - Dennis C Odero
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA
| |
Collapse
|
4
|
Wang D, Yu C, Wang G, Shi K, Li F, Yuan X. Phylogenetic and recombination analysis of Tobacco bushy top virus in China. Virol J 2015; 12:111. [PMID: 26209518 PMCID: PMC4514990 DOI: 10.1186/s12985-015-0340-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past decade, tobacco bushy top disease, which is mainly caused by a combination of Tobacco bushy top virus (TBTV) and Tobacco vein-distorting virus (TVDV), underwent a sudden appearance, extreme virulence and degeneration of the epidemic in the Yunnan province of China. In addition to integrative control of its aphid vector, it is of interest to examine diversity and evolution among different TBTV isolates. METHODS 5' and 3' RACE, combined with one step full-length RT-PCR, were used to clone the full-length genome of three new isolates of TBTV that exhibited mild pathogenicity in Chinese fields. Nucleotide and amino acid sequences for the TBTV isolates were analyzed by DNAMAN. MEGA 5.0 was used to construct phylogenetic trees. RDP4 was used to detect recombination events during evolution of these isolates. RESULTS The genomes of three isolates, termed TBTV-JC, TBTV-MD-I and TBTV-MD-II, were 4152 nt in length and included one distinctive difference from previously reported TBTV isolates: the first nucleotide of the genome was a guanylate instead of an adenylate. Diversity and phylogenetic analyses among these three new TBTV isolates and five other available isolates suggest that ORFs and 3'UTRs of TBTV may have evolved separately. Moreover, the RdRp-coding region was the most variable. Recombination analysis detected a total of 29 recombination events in the 8 TBTV isolates, in which 24 events are highly likely and 5 events have low-level likelihood based on their correlation with the phylogenetic trees. The three new TBTV isolates have individual recombination patterns with subtle divergences in parents and locations. CONCLUSIONS The genome sizes of TBTV isolates were constant while different ORF-coding regions and 3'UTRs may have evolved separately. The RdRp-coding region was the most variable. Frequent recombination occurred among TBTV isolates. Three new TBTV isolates have individual recombination patterns and may have different progenitors.
Collapse
Affiliation(s)
- Deya Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Chengming Yu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Guolu Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Kerong Shi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Fan Li
- Key Laboratory of Agricultural Biodiversity for Pest Management of China Education Ministry, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
5
|
Molecular evolutionary history of Sugarcane yellow leaf virus based on sequence analysis of RNA-dependent RNA polymerase and putative aphid transmission factor-coding genes. J Mol Evol 2014; 78:349-65. [PMID: 24952671 DOI: 10.1007/s00239-014-9630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
RNA-dependent RNA polymerase (RdRp) encoded by ORF2 and putative aphid transmission factor (PATF) encoded by ORF5 of Sugarcane yellow leaf virus (SCYLV) were detected in six sugarcane cultivars affected by yellow leaf using RT-PCR and real-time RT-PCR assays. Expression of both genes varied among infected plants, but overall expression of RdRp was higher than expression of PATF. Cultivar H87-4094 from Hawaii yielded the highest transcript levels of RdRp, whereas cultivar C1051-73 from Cuba exhibited the lowest levels. Sequence comparisons among 25 SCYLV isolates from various geographical locations revealed an amino acid similarity of 72.1-99.4 and 84.7-99.8 % for the RdRp and PATF genes, respectively. The 25 SCYLV isolates were separated into three (RdRp) and two (PATF) phylogenetic groups using the MEGA6 program that does not account for genetic recombination. However, the SCYLV genome contained potential recombination signals in the RdRp and PATF coding genes based on the GARD genetic algorithm. Use of this later program resulted in the reconstruction of phylogenies on the left as well as on the right sides of the putative recombination breaking points, and the 25 SCYLV isolates were distributed into three distinct phylogenetic groups based on either RdRp or PATF sequences. As a result, recombination reshuffled the affiliation of the accessions to the different clusters. Analysis of selection pressures exerted on RdRp and PATF encoded proteins revealed that ORF 2 and ORF 5 underwent predominantly purifying selection. However, a few sites were also under positive selection as assessed by various models such as FEL, IFEL, REL, FUBAR, MEME, GA-Branch, and PRIME.
Collapse
|
6
|
Lin YH, Gao SJ, Damaj MB, Fu HY, Chen RK, Mirkov TE. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype. Arch Virol 2014; 159:1421-9. [DOI: 10.1007/s00705-013-1957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
7
|
Lian S, Lee JS, Cho WK, Yu J, Kim MK, Choi HS, Kim KH. Phylogenetic and recombination analysis of tomato spotted wilt virus. PLoS One 2013; 8:e63380. [PMID: 23696821 PMCID: PMC3656965 DOI: 10.1371/journal.pone.0063380] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.
Collapse
Affiliation(s)
- Sen Lian
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong-Seung Lee
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jisuk Yu
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyeong Kim
- Department of Agricultural Biology, National Academy of Agriculture Sciences, Suwon, Republic of Korea
| | - Hong-Soo Choi
- Department of Agricultural Biology, National Academy of Agriculture Sciences, Suwon, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|