1
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Zhao J, He X, Min J, Yao RSY, Chen Y, Chen Z, Huang Y, Zhu Z, Gong Y, Xie Y, Li Y, Luo W, Shi D, Xu J, Shen A, Wang Q, Sun R, He B, Lin Y, Shen N, Cao B, Yang L, She D, Shi Y, Zhou J, Su X, Zhou H, Ma Z, Fan H, Lin Y, Ye F, Nie X, Zhang Q, Tian X, Lai G, Zhou M, Ma J, Zhang J, Qu J. A multicenter prospective study of comprehensive metagenomic and transcriptomic signatures for predicting outcomes of patients with severe community-acquired pneumonia. EBioMedicine 2023; 96:104790. [PMID: 37708700 PMCID: PMC10507133 DOI: 10.1016/j.ebiom.2023.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/29/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) results in high mortality as well as massive economic burden worldwide, yet limited knowledge of the bio-signatures related to prognosis has hindered the improvement of clinical outcomes. Pathogen, microbes and host are three vital elements in inflammations and infections. This study aims to discover the specific and sensitive biomarkers to predict outcomes of SCAP patients. METHODS In this study, we applied a combined metagenomic and transcriptomic screening approach to clinical specimens gathered from 275 SCAP patients of a multicentre, prospective study. FINDINGS We found that 30-day mortality might be independent of pathogen category or microbial diversity, while significant difference in host gene expression pattern presented between 30-day mortality group and the survival group. Twelve outcome-related clinical characteristics were identified in our study. The underlying host response was evaluated and enrichment of genes related to cell activation, immune modulation, inflammatory and metabolism were identified. Notably, omics data, clinical features and parameters were integrated to develop a model with six signatures for predicting 30-day mortality, showing an AUC of 0.953 (95% CI: 0.92-0.98). INTERPRETATION In summary, our study linked clinical characteristics and underlying multi-omics bio-signatures to the differential outcomes of patients with SCAP. The establishment of a comprehensive predictive model will be helpful for future improvement of treatment strategies and prognosis with SCAP. FUNDING National Natural Science Foundation of China (No. 82161138018), Shanghai Municipal Key Clinical Specialty (shslczdzk02202), Shanghai Top-Priority Clinical Key Disciplines Construction Project (2017ZZ02014), Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100).
Collapse
Affiliation(s)
- Jingya Zhao
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xiangyan He
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Jiumeng Min
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Rosary Sin Yu Yao
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhonglin Chen
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yi Huang
- Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Zhongyi Zhu
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yanping Gong
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital Wenzhou Medical College, Zhejiang, China
| | - Weiwei Luo
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Dongwei Shi
- Department of Emergency Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinfu Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ao Shen
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Ruixue Sun
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Bei He
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Lin
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Yang
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Danyang She
- Department of Pulmonary and Critical Care Medicine, The General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Shi
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Jiali Zhou
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Xin Su
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hua Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Zhenzi Ma
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Hong Fan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Yongquan Lin
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Feng Ye
- Department of Pulmonary and Critical Care Medicine, The First Affiliate Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xifang Nie
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Qiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Guoxiang Lai
- Department of Pulmonary and Critical Care Medicine, Fuzhou General Hospital, Fuzhou, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| | - Jinmin Ma
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China.
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|