1
|
Li Y, Wood TK, Zhang W, Li C. Purine metabolism regulates Vibrio splendidus persistence associated with protein aggresome formation and intracellular tetracycline efflux. Front Microbiol 2023; 14:1127018. [PMID: 37007472 PMCID: PMC10060992 DOI: 10.3389/fmicb.2023.1127018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
A small subpopulation of Vibrio splendidus AJ01 that was exposed to tetracycline at 10 times the minimal inhibitory concentration (MIC) still survived, named tetracycline-induced persister cells in our previous work. However, the formation mechanisms of persister is largely unknown. Here, we investigated tetracycline-induced AJ01 persister cells by transcriptome analysis and found that the purine metabolism pathway was significantly downregulated, which was consistent with lower levels of ATP, purine, and purine derivatives in our metabolome analysis. Inhibition of the purine metabolism pathway by 6-mercaptopurine (6-MP, inhibits ATP production), increased persister cell formation and accompanied with the decreasing intracellular ATP levels and increasing cells with protein aggresome. On the other hand, the persister cells had reduced intracellular tetracycline concentrations and higher membrane potential after 6-MP treatment. Inhibition of the membrane potential by carbonyl cyanide m-chlorophenyl hydrazone reversed 6-MP-induced persistence and resulted in higher levels of intracellular tetracycline accumulation. Meanwhile, cells with 6-MP treatment increased the membrane potential by dissipating the transmembrane proton pH gradient, which activated efflux to decrease the intracellular tetracycline concentration. Together, our findings show that reduction of purine metabolism regulates AJ01 persistence and is associated with protein aggresome formation and intracellular tetracycline efflux.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chenghua Li,
| |
Collapse
|
2
|
Wang Y, Weremiejczyk L, Strzelecka‐Kiliszek A, Maniti O, Amabile Veschi E, Bolean M, Ramos AP, Ben Trad L, Magne D, Bandorowicz‐Pikula J, Pikula S, Millán JL, Bottini M, Goekjian P, Ciancaglini P, Buchet R, Dou WT, Tian H, Mebarek S, He XP, Granjon T. Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e38. [PMID: 38939118 PMCID: PMC11080897 DOI: 10.1002/jex2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/29/2024]
Abstract
Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.
Collapse
Affiliation(s)
- Yubo Wang
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - Liliana Weremiejczyk
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | | | | | - Ekeveliny Amabile Veschi
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Mayte Bolean
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | | | - David Magne
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | | | - Slawomir Pikula
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Massimo Bottini
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - René Buchet
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | - Wei Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | | - Xiao P. He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | |
Collapse
|
3
|
Zhang L, Song M, Yang N, Zhang X, Abbas Raza SH, Jia K, Tian J, Zhang Y, Zhang D, Shi Q, Wu T, Kang Y, Hou G, Qian A, Wang G, Shan X. Nucleoside Diphosphate Kinases (ndk) reveals a key role in adhesion and virulence of Aeromonas veronii. Microb Pathog 2020; 149:104577. [DOI: 10.1016/j.micpath.2020.104577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
|
4
|
Li Y, Liu W, Saini V, Wong YH. Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function. Mol Cell Biochem 2020; 474:95-112. [PMID: 32705629 DOI: 10.1007/s11010-020-03836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
Abstract
The Nm23 metastasis suppressor family is involved in a variety of physiological and pathological processes including cell proliferation, differentiation, tumorigenesis, and metastasis. Given that Nm23 proteins may function as hexamers composed of different members of the family, especially Nm23-H1 and H2 isoforms, it is pertinent to assess the importance of interface and surface residues in defining the functional characteristics of Nm23 proteins. Using molecular modeling to identify clusters of residues that may affect dimer formation and isoform specificity, mutants of Nm23-H1 were constructed and assayed for their ability to modulate cell migration. Mutations of dimer interface residues Gly22 and Lys39 affected the expression level of Nm23-H1, without altering the transcript level. The reduced protein expression was not due to increased protein degradation or altered subcellular distribution. Substitution of the surface residues of Nm23-H1 with Nm23-H2-specific Ser131 and/or Lys124/135 affected the electrophoretic mobility of the protein. Moreover, in cell migration assays, several mutants with altered surface residues exhibited impaired ability to suppress the mobility of MDA-MB-231 cells. Collectively, the study suggests that disrupting the dimer interface may affect the expression of Nm23-H1, while the residues at α-helix and β-sheet on the surface of Nm23-H1 may contribute to its metastasis suppressive function.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.,Eye Center of Xiangya Hospital, Hunan Key Laboratory of Opthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Liu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China. .,State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Filić V, Marinović M, Šoštar M, Weber I. Modulation of small GTPase activity by NME proteins. J Transl Med 2018; 98:589-601. [PMID: 29434248 DOI: 10.1038/s41374-018-0023-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022] Open
Abstract
NME proteins are reported to influence signal transduction activity of small GTPases from the Ras superfamily by diverse mechanisms in addition to their generic NDP kinase activity, which replenishes the cytoplasmic pool of GTP. Comprehensive evidence shows that NME proteins modulate the activity of Ras GTPases, in particular members of the Rho family, via binding to their major activators GEFs. Direct interaction between several NMEs and Ras GTPases were also indicated in vitro and in vivo. These modes of regulation are mainly independent of the NME's kinase activity. NMEs also modulate the Ras-mediated signal transduction by interfering with the formation of a Ras signaling complex at the plasma membrane. In several examples, NMEs were proposed to perform the role of GAP proteins by promoting hydrolysis of the bound GTP, but this activity still requires additional verification. Early suggestions that NMEs can activate small GTPases by direct phosphorylation of the bound GDP, or by high-rate loading of GTP onto a closely apposed GTPase, were largely dismissed. In this review article, we survey and put into perspective published examples of identified and hypothetical mechanisms of Ras signaling modulation by NME proteins. We also point out involvement of NMEs in the transcriptional regulation of components of Ras GTPases-mediated signal transduction pathways, and reciprocal regulation of NME function by small GTPases, particularly related to NME's binding to membranes.
Collapse
Affiliation(s)
- Vedrana Filić
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Maja Marinović
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Marko Šoštar
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Igor Weber
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM. Nuclear functions of NME proteins. J Transl Med 2018; 98:211-218. [PMID: 29058704 PMCID: PMC6136249 DOI: 10.1038/labinvest.2017.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3'-5' exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
Collapse
|
7
|
Chadli M, Rebaud S, Maniti O, Tillier B, Cortès S, Girard-Egrot A. New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10385-10401. [PMID: 28877444 DOI: 10.1021/acs.langmuir.7b01636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10-7 cm2/s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP2), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven-transmembrane protein belonging to the large superfamily of G-protein-coupled receptors (GPCRs). We succeeded in reinserting CXCR4 in pep-tBLMs formed on P19-4H by the fusion of tethered proteoliposomes. AFM and FRAP characterization allowed us to show that pep-tBLMs inserting CXCR4 remained fluid, homogeneous, and continuous. The value of the diffusion coefficient determined in the presence of reinserted CXCR4 was 2 × 10-7 cm2/s. Ligand binding assays using a synthetic CXCR4 antagonist, T22 ([Tyr5,12, Lys7]-polyphemusin II), revealed that CXCR4 can be reinserted in pep-tBLMs with functional folding and orientation. This new approach represents a method of choice for investigating membrane protein reincorporation and a promising way of creating a new generation of membrane biochips adapted for screening agonists or antagonists of transmembrane proteins.
Collapse
Affiliation(s)
- Meriem Chadli
- Univ Lyon, Université Lyon 1 , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR CNRS 5246, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
- Synthelis, Biopolis, 5, Avenue du Grand Sablon, 38700 La Tronche, France
| | - Samuel Rebaud
- Univ Lyon, Université Lyon 1 , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR CNRS 5246, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Ofelia Maniti
- Univ Lyon, Université Lyon 1 , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR CNRS 5246, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Bruno Tillier
- Synthelis, Biopolis, 5, Avenue du Grand Sablon, 38700 La Tronche, France
| | - Sandra Cortès
- Synthelis, Biopolis, 5, Avenue du Grand Sablon, 38700 La Tronche, France
| | - Agnès Girard-Egrot
- Univ Lyon, Université Lyon 1 , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR CNRS 5246, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Francois-Moutal L, Ouberai MM, Maniti O, Welland ME, Strzelecka-Kiliszek A, Wos M, Pikula S, Bandorowicz-Pikula J, Marcillat O, Granjon T. Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12923-12933. [PMID: 27934520 DOI: 10.1021/acs.langmuir.6b03789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.
Collapse
Affiliation(s)
- Liberty Francois-Moutal
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Myriam M Ouberai
- Nanoscience Centre, University of Cambridge , 11 J.J. Thomson Avenue Cambridge, Cambridge CB3 0FF, U.K
| | - Ofelia Maniti
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Mark E Welland
- Nanoscience Centre, University of Cambridge , 11 J.J. Thomson Avenue Cambridge, Cambridge CB3 0FF, U.K
| | - Agnieszka Strzelecka-Kiliszek
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Marcin Wos
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Joanna Bandorowicz-Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Olivier Marcillat
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Thierry Granjon
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| |
Collapse
|
9
|
Liu Y, Chen S, Zhang J, Gao B. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin. WATER RESEARCH 2016; 93:141-152. [PMID: 26900975 DOI: 10.1016/j.watres.2016.01.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/17/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
Ecological risk of antibiotics due to the induction of antibiotic-resistant bacteria has been widely investigated, while studies on the hazard of antibiotic contaminants via the regulation of cyanobacteria were still limited. This study focused on the long-term action effect and mechanism of amoxicillin (a broadly used antibiotic) in Microcystis aeruginosa at environmentally relevant concentrations through 30 days of semi-continuous culture. Amoxicillin stimulated the photosynthesis activity and the production of microcystins, and interaction of differential proteins under amoxicillin exposure further manifested the close correlation between the two processes. D1 protein, ATP synthase subunits alpha and beta, enolase, triosephosphate isomerase and phosphoglycerate kinase were candidate target positions of amoxicillin in M. aeruginosa under long-term exposure. Amoxicillin affected the cellular biosynthesis process and the metabolism of carbohydrate and nucleoside phosphate according to the proteomic responses. Under exposure to amoxicillin, stimulated growth rate at the beginning phase and increased production and release of microcystins during the whole exposure period would lead to a higher contamination of M. aeruginosa cells and microcystins, indicating that amoxicillin was harmful to aquatic environments through the promotion of cyanobacterial bloom.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| | - Shi Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
10
|
Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J. Cardiolipin Interactions with Proteins. Biophys J 2015; 109:1282-94. [PMID: 26300339 DOI: 10.1016/j.bpj.2015.07.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/18/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022] Open
Abstract
Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom
| | - Himal Dwarakanath
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom
| | - Dariush Mohammadyani
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Naveena Yanamala
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judith Klein-Seetharaman
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Li Y, Tong Y, Wong YH. Regulatory functions of Nm23-H2 in tumorigenesis: insights from biochemical to clinical perspectives. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:243-56. [PMID: 25413836 DOI: 10.1007/s00210-014-1066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022]
Abstract
Substantial effort has been directed at elucidating the functions of the products of the Nm23 tumor metastasis suppressor genes over the past two decades, with the ultimate goal of exploring their translational potentials in changing cancer patients' outcomes. Much attention has been focused on the better-known Nm23-H1, but despite having high sequence similarity, Nm23-H2 functions differently in many aspects. Besides acting as a metastasis suppressor, compelling data suggest that Nm23-H2 may modulate various tumor-associated biological events to enhance tumorigenesis in human solid tumors and hematological malignancies. Linkage to tumorigenesis may occur through the ability of Nm23-H2 to regulate transcription, cell proliferation, apoptosis, differentiation, and telomerase activity. In this review, we examine the linkages of Nm23-H2 to tumorigenesis in terms of its biochemical and structural properties and discuss its potential role in various tumor-associated events.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|