1
|
Ikram M, Raja NI, Mohamed AH, Mashwani ZUR, Omar AA, Gharibi H, Zubarev RA. Differential impact of plant-based selenium nanoparticles on physio-biochemical properties, antioxidant defense system and protein regulation in fruits of huanglongbing-infected 'Kinnow' mandarin plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1476497. [PMID: 39574450 PMCID: PMC11578725 DOI: 10.3389/fpls.2024.1476497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Huanglongbing disease (HLB) is the most severe citrus disease destroying Citrus reticulata L. 'Kinnow', the most commonly grown mandarin in Pakistan. It is caused by Candidatus Liberibacter bacterial species and it spreads through the sucking Asian citrus psyllid insect. The current study was designed to investigate the potential impact of plant extract mediated selenium nanoparticles (SeNPs) on antioxidant defense system, fruit quality and protein regulation in the fruits of HLB-infected 'Kinnow' mandarin plants. Garlic cloves extract was used as reducing and capping agent for the synthesis of SeNPs. Various concentrations of SeNPs (25, 50, 75, and 100 mg L-1) were exogeneously applied to HLB-positive citrus plants. SeNPs at the concentration of 75 mg L-1 affected positively fruit physio-biochemical parameters, e.g., peel thickness, peel weight, fruit weight, fruit diameter, total soluble solids, juice volume, ascorbic acid content and reduced total acidity. Furthermore, SeNPs also enhanced the amounts of total protein and total sugar as well as elevated antioxidant enzymes, e.g., superoxide dismutase, peroxidases, and catalases. Non-enzymatic antioxidant content, e.g., total phenolic and total flavonoids, was also elevated. Proteomics analysis revealed that exposure to SeNPs at the concentration of 75 mg·L-1 significantly altered in HLB infected mandarin fruting plants the expression of proteins associated with transcription, protection, cell wall biogenesis, cell wall organization, reproduction, stamen formation, embryo development, inflorescence development, as well as translation and response to oxidative stress. Our results revealed that foliar application of SeNPs influences the protein contents positively, therefore ameliorating fruit physio-biochemical quality by boosting antioxidant defense systems of HLB-infected 'Kinnow' mandarin plants.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Azza H. Mohamed
- Department of Agricultural Chemistry, College of Agriculture, Mansoura University, Mansoura, Egypt
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Hassan Gharibi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, Moscow, Russia
| |
Collapse
|
2
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
3
|
Costa GCA, Silva FAA, Torquato RJS, Silva Vaz I, Parizi LF, Tanaka AS. Evaluation of the biological function of ribosomal protein S18 from cattle tick Rhipicephalus microplus. Ticks Tick Borne Dis 2024; 15:102333. [PMID: 38522220 DOI: 10.1016/j.ttbdis.2024.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Rhipicephalus (Boophilus) microplus, also known as the cattle tick, causes severe parasitism and transmits different pathogens to vertebrate hosts, leading to massive economic losses. In the present study, we performed a functional characterization of a ribosomal protein from R. microplus to investigate its importance in blood feeding, egg production and viability. Ribosomal protein S18 (RPS18) is part of the 40S subunit, associated with 18S rRNA, and has been previously pointed to have a secondary role in different organisms. Rhipicephalus microplus RPS18 (RmRPS18) gene expression levels were modulated in female salivary glands during blood feeding. Moreover, mRNA levels in this tissue were 10 times higher than those in the midgut of fully engorged female ticks. Additionally, recombinant RmRPS18 was recognized by IgG antibodies from sera of cattle naturally or experimentally infested with ticks. RNAi-mediated knockdown of the RmRPS18 gene was performed in fully engorged females, leading to a significant (29 %) decrease in egg production. Additionally, egg hatching was completely impaired, suggesting that no viable eggs were produced by the RmRPS18-silenced group. Furthermore, antimicrobial assays revealed inhibitory activities against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria, affecting bacterial growth. Data presented here show the important role of RmRPS18 in tick physiology and suggest that RmRPS18 can be a potential target for the development of novel strategies for tick control.
Collapse
Affiliation(s)
- Gabriel C A Costa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando A A Silva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo J S Torquato
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Itabajara Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil.
| |
Collapse
|
4
|
Khan WH, Ahmad R, Alam R, Khan N, Rather IA, Wani MY, Singh RB, Ahmad A. Role of ribosomal pathways and comorbidity in COVID-19: Insight from SARS-CoV-2 proteins and host proteins interaction network analysis. Heliyon 2024; 10:e29967. [PMID: 38694063 PMCID: PMC11059120 DOI: 10.1016/j.heliyon.2024.e29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The COVID-19 pandemic has become a significant global issue in terms of public health. While it is largely associated with respiratory complications, recent reports indicate that patients also experience neurological symptoms and other health issues. The objective of this study is to examine the network of protein-protein interactions (PPI) between SARS-CoV-2 proteins and human host proteins, pinpoint the central genes within this network implicated in disease pathology, and assess their viability as targets for drug development. The study adopts a network-based approach to construct a network of 29 SARS-CoV-2 proteins interacting with 2896 host proteins, with 176 host genes being identified as interacting genes with all the viral proteins. Gene ontology and pathway analysis of these host proteins revealed their role in biological processes such as translation, mRNA splicing, and ribosomal pathways. We further identified EEF2, RPS3, RPL9, RPS16, and RPL11 as the top 5 most connected hub genes in the disease-causing network, with significant interactions among each other. These hub genes were found to be involved in ribosomal pathways and cytoplasmic translation. Further a disease-gene interaction was also prepared to investigate the role of hub genes in other disorders and to understand the condition of comorbidity in COVID-19 patients. We also identified 13 drug molecules having interactions with all the hub genes, and estradiol emerged as the top potential drug target for the COVID-19 patients. Our study provides valuable insights using the protein-protein interaction network of SARS-CoV-2 proteins with host proteins and highlights the molecular basis of manifestation of COVID-19 and proposes drug for repurposing. As the pandemic continues to evolve, it is anticipated that investigating SARS-CoV-2 proteins will remain a critical area of focus for researchers globally, particularly in addressing potential challenges posed by specific SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ragib Alam
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - R.K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Bulygin KN, Malygin AA, Graifer DM. Functional involvement of a conserved motif in the middle region of the human ribosomal protein eL42 in translation. Biochimie 2024; 218:96-104. [PMID: 37716853 DOI: 10.1016/j.biochi.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Ribosomal protein eL42 (formerly known as L36A), a small protein of the large (60S) subunit of the eukaryotic ribosome, is a component of its exit (E) site. The residue K53 of this protein resides within the motif QSGYGGQTK mainly conserved in eukaryotes, and it is located in the immediate vicinity of the CCA-terminus of the ribosome-bound tRNA in the hybrid P/E state. To examine the role of this eL42 motif in translation, we obtained HEK293T cells producing the wild-type FLAG-tagged protein or its mutant forms with either single substitutions of conserved amino acid residues in the above motif, or simultaneous replacements in positions 45 and 51 or 45 and 53. Examination of the level of exogenous eL42 in fractions of polysome profiles from the target protein-producing cells by the Western blotting revealed that neither single substitution affects the assembly of 60S ribosomal subunits and 80S ribosomes or critically decreases the level of polysomes, but the latter was observed with the double replacements. Analysis of tRNAs bound to 80S ribosomes containing eL42 with double substitutions and examination their peptidyl transferase activity enabled estimation the stage of the elongation cycle, in which amino acid residues of the conserved eL42 motif are involved. We clearly show that cooperative interactions implicating the eL42 residues Q45, Q51, and K53 play a critical role in the ability of the human ribosome to perform properly elongation cycle at the step of deacylated tRNA dissociation from the E site in the human cell.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
6
|
Ochkasova A, Arbuzov G, Malygin A, Graifer D. Two "Edges" in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Int J Mol Sci 2023; 24:11458. [PMID: 37511213 PMCID: PMC10380927 DOI: 10.3390/ijms241411458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ribosomal proteins (RPs), the constituents of the ribosome, belong to the most abundant proteins in the cell. A highly coordinated network of interactions implicating RPs and ribosomal RNAs (rRNAs) forms the functionally competent structure of the ribosome, enabling it to perform translation, the synthesis of polypeptide chain on the messenger RNA (mRNA) template. Several RPs contact ribosomal ligands, namely, those with transfer RNAs (tRNAs), mRNA or translation factors in the course of translation, and the contribution of a number of these particular contacts to the translation process has recently been established. Many ribosomal proteins also have various extra-ribosomal functions unrelated to translation. The least-understood and -discussed functions of RPs are those related to their participation in the intercellular communication via extracellular vesicles including exosomes, etc., which often carry RPs as passengers. Recently reported data show that such a kind of communication can reprogram a receptor cell and change its phenotype, which is associated with cancer progression and metastasis. Here, we review the state-of-art ideas on the implications of specific amino acid residues of RPs in the particular stages of the translation process in higher eukaryotes and currently available data on the transport of RPs by extracellular vesicles and its biological effects.
Collapse
Affiliation(s)
- Anastasia Ochkasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Grigory Arbuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Zhao Y, Li Y, Zhu R, Feng R, Cui H, Yu X, Huang F, Zhang R, Chen X, Li L, Chen Y, Liu Y, Wang J, Du G, Liu Z. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m 6A modification. Signal Transduct Target Ther 2023; 8:224. [PMID: 37264021 DOI: 10.1038/s41392-023-01428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 06/03/2023] Open
Abstract
Increased rates of ribosome biogenesis have been recognized as hallmarks of many cancers and are associated with poor prognosis. Using a CRISPR synergistic activation mediator (SAM) system library targeting 89 ribosomal proteins (RPs) to screen for the most oncogenic functional RPs in human esophageal squamous cell carcinoma (ESCC), we found that high expression of RPS15 correlates with malignant phenotype and poor prognosis of ESCC. Gain and loss of function models revealed that RPS15 promotes ESCC cell metastasis and proliferation, both in vitro and in vivo. Mechanistic investigations demonstrated that RPS15 interacts with the K homology domain of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which recognizes and directly binds the 3'-UTR of MKK6 and MAPK14 mRNA in an m6A-dependent manner, and promotes translation of core p38 MAPK pathway proteins. By combining targeted drug virtual screening and functional assays, we found that folic acid showed a therapeutic effect on ESCC by targeting RPS15, which was augmented by the combination with cisplatin. Inhibition of RPS15 by folic acid, IGF2BP1 ablation, or SB203580 treatment were able to suppress ESCC metastasis and proliferation via the p38 MAPK signaling pathway. Thus, RPS15 promotes ESCC progression via the p38 MAPK pathway and RPS15 inhibitors may serve as potential anti-ESCC drugs.
Collapse
Affiliation(s)
- Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heyang Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xiankai Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yinghui Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jinhua Wang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Martín-Marcos P, Gil-Hernández Á, Tamame M. Wide mutational analysis to ascertain the functional roles of eL33 in ribosome biogenesis and translation initiation. Curr Genet 2022; 68:619-644. [PMID: 35994100 DOI: 10.1007/s00294-022-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An extensive mutational analysis of RPL33A, encoding the yeast ribosomal protein L33A (eL33) allowed us to identify several novel rpl33a mutants with different translational phenotypes. Most of the rpl33a mutants are defective in the processing of 35S and 27S pre-rRNA precursors and the production of mature rRNAs, exhibiting reductions in the amounts of ribosomal subunits and altered polysome profiles. Some of the rpl33a mutants exhibit a Gcd- phenotype of constitutive derepression of GCN4 translation and strong slow growth phenotypes at several temperatures. Interestingly, some of the later mutants also show a detectable increase in the UUG/AUG translation initiation ratio that can be suppressed by eIF1 overexpression, suggesting a requirement for eL33 and a correct 60S/40S subunit ratio for the proper recognition of the AUG start codon. In addition to producing differential reductions in the rates of pre-rRNA maturation and perhaps in r-protein assembly, most of the point rpl33a mutations alter specific molecular interactions of eL33 with the rRNAs and other r-proteins in the 60S structure. Thus, rpl33a mutations cause distinctive effects on the abundance and/or functionality of 60S subunits, leading to more or less pronounced defects in the rates and fidelity of mRNA translation.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
9
|
Bulygin KN, Malygin AA, Graifer DM, Karpova GG. The functional role of the eukaryote-specific motif YxxPKxYxK of the human ribosomal protein eS26 in translation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194842. [PMID: 35817369 DOI: 10.1016/j.bbagrm.2022.194842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The protein eS26 is a structural component of the eukaryotic small ribosomal subunit involved in the formation of the mRNA binding channel in the region of the exit site. By applying site-directed cross-linking to mammalian 80S ribosomes, it has been shown that the same mRNA nucleotide residues are implicated in the interaction with both eS26 and translation initiation factor 3 (eIF3) and that contacts of the protein with mRNAs are mediated by its eukaryote-specific motif YxxPKxYxK. To examine the role of eS26 in translation, we transfected HEK293T cells with plasmid constructs encoding the wild-type FLAG-labeled protein (wt-eS26FLAG) or its forms with either a single substitution of any conserved amino acid residue in the above motif, or a simultaneous replacement of all the five ones (5A). The western blot analysis of fractions of polysome profiles from the transfected cells revealed no effects of the single mutations in eS26, but showed that the replacement of the five conserved residues led to the increased share of the light polysome fraction compared to that detected with control, wt-eS26FLAG-producing cells. In addition, the above fraction exhibited the enhanced content of the eIF3e subunit that is known to promote selective translation. These findings, together with real-time PCR data on the relative contents of specific mRNAs in light and heavy polysomes from cells producing the mutant 5A compared to those from control cells, suggest a possible involvement of the YxxPKxYxK motif of eS26 in the fine regulation of translation to maintain the required balance of synthesized proteins.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
10
|
Tantray AY, Hazzazi Y, Ahmad A. Physiological, Agronomical, and Proteomic Studies Reveal Crucial Players in Rice Nitrogen Use Efficiency under Low Nitrogen Supply. Int J Mol Sci 2022; 23:6410. [PMID: 35742855 PMCID: PMC9224494 DOI: 10.3390/ijms23126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Excessive use of nitrogenous fertilizers to enhance rice productivity has become a significant source of nitrogen (N) pollution and reduced sustainable agriculture. However, little information about the physiology of different growth stages, agronomic traits, and associated genetic bases of N use efficiency (NUE) are available at low-N supply. Two rice (Oryza sativa L.) cultivars were grown with optimum N (120 kg ha-1) and low N (60 kg ha-1) supply. Six growth stages were analyzed to measure the growth and physiological traits, as well as the differential proteomic profiles, of the rice cultivars. Cultivar Panvel outclassed Nagina 22 at low-N supply and exhibited improved growth and physiology at most of the growth stages and agronomic efficiency due to higher N uptake and utilization at low-N supply. On average, photosynthetic rate, chlorophyll content, plant biomass, leaf N content, and grain yield were decreased in cultivar Nagina 22 than Panvel was 8%, 11%, 21%, 19%, and 22%, respectively, under low-N supply. Furthermore, proteome analyses revealed that many proteins were upregulated and downregulated at the different growth stages under low-N supply. These proteins are associated with N and carbon metabolism and other physiological processes. This supports the genotypic differences in photosynthesis, N assimilation, energy stabilization, and rice-protein yield. Our study suggests that enhancing NUE at low-N supply demands distinct modifications in N metabolism and physiological assimilation. The NUE may be regulated by key identified differentially expressed proteins. These proteins might be the targets for improving crop NUE at low-N supply.
Collapse
Affiliation(s)
- Aadil Yousuf Tantray
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Yehia Hazzazi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK;
- Biology Department, Faculty of Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| |
Collapse
|
11
|
Zhao Y, Castro LFC, Monroig Ó, Cao X, Sun Y, Gao J. A zebrafish pparγ gene deletion reveals a protein kinase network associated with defective lipid metabolism. Funct Integr Genomics 2022; 22:435-450. [PMID: 35290539 DOI: 10.1007/s10142-022-00839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (Pparγ) is a master regulator of adipogenesis. Chronic pathologies such as obesity, cardiovascular diseases, and diabetes involve the dysfunction of this transcription factor. Here, we generated a zebrafish mutant in pparγ (KO) with CRISPR/Cas9 technology and revealed its regulatory network. We uncovered the hepatic phenotypes of these male and female KO, and then the male wild-type zebrafish (WT) and KO were fed with a high-fat (HF) or standard diet (SD). We next conducted an integrated analyze of the proteomics and phosphoproteomics profiles. Compared with WT, the KO showed remarkable hyalinization and congestion lesions in the liver of males. Strikingly, pparγ deletion protected against the influence of high-fat diet feeding on lipid deposition in zebrafish. Some protein kinases critical for lipid metabolism, including serine/threonine-protein kinase TOR (mTOR), ribosomal protein S6 kinase (Rps6kb1b), and mitogen-activated protein kinase 14A (Mapk14a), were identified to be highly phosphorylated in KO based on differential proteome and phosphoproteome analysis. Our study supplies a pparγ deletion animal model and provides a comprehensive description of pparγ-induced expression level alterations of proteins and their phosphorylation, which are vital to understand the defective lipid metabolism risks posed to human health.
Collapse
Affiliation(s)
- Yan Zhao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430070, China
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- FCUP - Faculty of Sciences, Department of Biology, University of Porto, Porto, Portugal
| | - Óscar Monroig
- Instituto de Acuicultura Torre de La Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
12
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the detoxification enzymes of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21850. [PMID: 34750851 DOI: 10.1002/arch.21850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Detoxification enzymes are necessary for insects to metabolize toxic substances and maintain physiological activities. Cytochromes P450 (CYPs), glutathione S-transferases (GSTs), and carboxylesterase (CarEs) are the main detoxification enzymes in insects. In addition, UDP-glucosyltransferase and ATP-binding cassette transporter also participate in the process of material metabolism. This study collected proteins related to detoxification in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). And we performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on these proteins to understand their biological function. We constructed the protein-protein interaction network for the silkworm's detoxification enzymes and analyzed the network's topological properties. We found that BGIBMGA014046-TA, BGIBMGA003221-TA, BGIBMGA011092-TA, BGIBMGA000074-TA, and LOC732976 are the essential proteins in the network. These proteins are primarily involved in the process of ribosome biogenesis and may be related to protein synthesis. We integrated GO, KEGG, and network analysis and found that ribosome-associated protein and GSTs played a vital role in the detoxification process.
Collapse
Affiliation(s)
- ShangHong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Yusupova G, Yusupov M. A Path to the Atomic-Resolution Structures of Prokaryotic and Eukaryotic Ribosomes. BIOCHEMISTRY (MOSCOW) 2021; 86:926-941. [PMID: 34488570 DOI: 10.1134/s0006297921080046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Resolving first crystal structures of prokaryotic and eukaryotic ribosomes by our group has been based on the knowledge accumulated over the decades of studies, starting with the first electron microscopy images of the ribosome obtained by J. Pallade in 1955. In 1983, A. Spirin, then a Director of the Protein Research Institute of the USSR Academy of Sciences, initiated the first study aimed at solving the structure of ribosomes using X-ray structural analysis. In 1999, our group in collaboration with H. Noller published the first crystal structure of entire bacterial ribosome in a complex with its major functional ligands, such as messenger RNA and three transport RNAs at the A, P, and E sites. In 2011, our laboratory published the first atomic-resolution structure of eukaryotic ribosome solved by the X-ray diffraction analysis that confirmed the conserved nature of the main ribosomal functional components, such as the decoding and peptidyl transferase centers, was confirmed, and eukaryote-specific elements of the ribosome were described. Using X-ray structural analysis, we investigated general principles of protein biosynthesis inhibition in eukaryotic ribosomes, along with the mechanisms of antibiotic resistance. Structural differences between bacterial and eukaryotic ribosomes that determine the differences in their inhibition were established. These and subsequent atomic-resolution structures of the functional ribosome demonstrated for the first time the details of binding of messenger and transport RNAs, which was the first step towards understanding how the ribosome structure ultimately determines its functions.
Collapse
Affiliation(s)
- Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, 67404, France
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, 67404, France. .,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| |
Collapse
|
14
|
Jie Q, Sun F, Li Q, Zhu J, Wei Y, Yang H, Long P, Wang Z, Yang X, Li D, Huang L, Ma Y. Downregulated ribosomal protein L39 inhibits trophoblast cell migration and invasion by targeting E-cadherin in the placenta of patients with preeclampsia. FASEB J 2021; 35:e21322. [PMID: 33710681 DOI: 10.1096/fj.202002061r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
Early-onset preeclampsia (PE) is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes. However, the mechanisms underlying the development of early-onset PE are not fully understood. Ribosomal protein L39 (RPL39) is a member of the S39E family of ribosomal proteins that plays an important role in stem cell self-renewal, cancer metastasis, and chemoresistance. In this study, we aimed to explore the potential function of RPL39 in placental trophoblast cells. We analyzed the expression of RPL39 in early-onset PE and normal placental tissues using real-time PCR, western blot analysis, and immunohistochemistry. The results showed that RPL39 was markedly downregulated in early-onset PE placental tissues. RPL39 knockdown inhibited trophoblast cell proliferation, migration, and invasion, as well as placental explant outgrowth. Flow cytometry analysis suggested that knockdown of RPL39 resulted in cell cycle arrest at the G0/G1 phase, but had no significant effect on cell apoptosis. We also found that RPL39 knockdown could alter cell morphology. We then measured the expression of the epithelial cell marker E-cadherin following knockdown of RPL39 in Bewo and HTR8/SVneo cells. RPL39 knockdown increased the expression of E-cadherin. Furthermore, E-cadherin expression was upregulated in placental explant outgrowth tissues transfected with RPL39 small interfering RNA. In conclusion, RPL39 plays an essential role in proliferation, invasion, and migration of trophoblast cells by targeting E-cadherin. Our findings provide novel insight into the mechanisms underlying the occurrence of early-onset PE.
Collapse
Affiliation(s)
- Qiuling Jie
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Li
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yunjian Wei
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huamei Yang
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Long
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhen Wang
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaohui Yang
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Dan Li
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Ma
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
15
|
Zhang Y, Zhao J, Zhou BH, Tian EJ, Tian WS, Wang HW. iTRAQ-based quantitative proteomic analysis of low molybdenum inducing thymus atrophy and participating in immune deficiency-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112200. [PMID: 33862434 DOI: 10.1016/j.ecoenv.2021.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Molybdenum is a trace element with extremely uneven distribution in the environment. It constitutes the active sites of molybdenum enzymes that can catalyze redox reactions in almost all organisms. In this study, a mouse model with a low molybdenum diet was established to investigate the differential protein expressions in the thymus and the mechanism of molybdenum regulating thymocyte development. Results showed that the thymus evidently atrophied, and the weight and organ index of the thymus substantially decreased under the condition of low molybdenum (P < 0.01). A total of 274 differentially expressed proteins (DEPs) were screened through isobaric tag for relative and absolute quantification; amongst them, ribosomal proteins (38) were the most abundant. Bioinformatics analysis revealed that DEPs were mainly involved in protein metabolism (18%), nucleus (15%) and nucleic acid binding activity (17%), corresponding to biological process, cellular component and molecular function, respectively. Moreover, DEPs induced by low molybdenum were enriched in 94 pathways, of which typical maps including ribosome, oxidative phosphorylation and systemic lupus erythematosus. Flow cytometry analysis indicated the prominent imbalances of CD4+ and CD8+ cell ratios (P < 0.05, P < 0.01), suggesting the disordered development of T cell subsets. Overall, low molybdenum resulted in thymus atrophy by interfering with ribosomal protein expression and protein metabolism. This study provides a data platform for revealing the linkage between molybdenum and thymus-dependent immunity.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Er-Jie Tian
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Wei-Shun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan 54596, South Korea
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China.
| |
Collapse
|
16
|
Abstract
To perform an accurate protein synthesis, ribosomes accomplish complex tasks involving the long-range communication between its functional centres such as the peptidyl transfer centre, the tRNA bindings sites and the peptide exit tunnel. How information is transmitted between these sites remains one of the major challenges in current ribosome research. Many experimental studies have revealed that some r-proteins play essential roles in remote communication and the possible involvement of r-protein networks in these processes have been recently proposed. Our phylogenetic, structural and mathematical study reveals that of the three kingdom's r-protein networks converged towards non-random graphs where r-proteins collectively coevolved to optimize interconnection between functional centres. The massive acquisition of conserved aromatic residues at the interfaces and along the extensions of the newly connected eukaryotic r-proteins also highlights that a strong selective pressure acts on their sequences probably for the formation of new allosteric pathways in the network.
Collapse
|
17
|
Babaylova ES, Kolobova AV, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. The human ribosomal protein eL29 binds in vivo to the cognate mRNA by interacting with its coding sequence, as revealed from in-cell cross-linking data. Biochimie 2020; 177:68-77. [DOI: 10.1016/j.biochi.2020.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
|
18
|
Poncová K, Wagner S, Jansen ME, Beznosková P, Gunišová S, Herrmannová A, Zeman J, Dong J, Valášek LS. uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Res 2020; 47:11326-11343. [PMID: 31642471 PMCID: PMC6868437 DOI: 10.1093/nar/gkz929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.
Collapse
Affiliation(s)
- Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.,Charles University, Faculty of Science, Prague, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Myrte Esmeralda Jansen
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
19
|
Pokhrel R, Chapagain P, Siltberg-Liberles J. Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. J Med Microbiol 2020; 69:864-873. [PMID: 32469301 PMCID: PMC7451031 DOI: 10.1099/jmm.0.001203] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023] Open
Abstract
Introduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics.Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication.Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen.Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects.Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.
Collapse
Affiliation(s)
- Rudramani Pokhrel
- Department of Physics, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Jessica Siltberg-Liberles
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
20
|
Knockdown of the Ribosomal Protein eL29 in Mammalian Cells Leads to Significant Changes in Gene Expression at the Transcription Level. Cells 2020; 9:cells9051228. [PMID: 32429214 PMCID: PMC7291024 DOI: 10.3390/cells9051228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.
Collapse
|
21
|
Babaylova ES, Gopanenko AV, Bulygin KN, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. mRNA regions where 80S ribosomes pause during translation elongation in vivo interact with protein uS19, a component of the decoding site. Nucleic Acids Res 2020; 48:912-923. [PMID: 31802126 PMCID: PMC6954443 DOI: 10.1093/nar/gkz1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022] Open
Abstract
In eukaryotic ribosomes, the conserved protein uS19, formerly known as S15, extends with its C-terminal tail to the decoding site. The cross-linking of uS19 to the A site codon has been detected using synthetic mRNAs bearing 4-thiouridine (s4U) residues. Here, we showed that the A-site tRNA prevents this cross-linking and that the P site codon does not contact uS19. Next, we focused on determining uS19-mRNA interactions in vivo by applying the photoactivatable-ribonucleoside enhancing cross-linking and immunoprecipitation method to a stable HEK293 cell line producing FLAG-tagged uS19 and grown in a medium containing s4U. We found that when translation was stopped by cycloheximide, uS19 was efficiently cross-linked to mRNA regions with a high frequency of Glu, Lys and, more rarely, Arg codons. The results indicate that the complexes, in which the A site codon is not involved in the formation of the mRNA-tRNA duplex, are present among the cycloheximide-arrested 80S complexes, which implies pausing of elongating ribosomes at the above mRNA regions. Thus, our findings demonstrate that the human ribosomal protein uS19 interacts with mRNAs during translation elongation and highlight the regions of mRNAs where ribosome pausing occurs, bringing new structural and functional insights into eukaryotic translation in vivo.
Collapse
Affiliation(s)
- Elena S Babaylova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia
| | - Alexander V Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia
| | - Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
The functional role of the C-terminal tail of the human ribosomal protein uS19. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194490. [DOI: 10.1016/j.bbagrm.2020.194490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 11/18/2022]
|
23
|
Vasilyeva AE, Yanshina DD, Karpova GG, Malygin AA. Mutations Preventing the Phosphorylation of Human Ribosomal Protein uS15 at Y38 and S48 Reduce the Efficiency of its Transfer into the Nucleolus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Du B, Liu G, Ke M, Zhang Z, Zheng M, Lu T, Sun L, Qian H. Proteomic analysis of the hepatotoxicity of Microcystis aeruginosa in adult zebrafish (Danio rerio) and its potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113019. [PMID: 31419664 DOI: 10.1016/j.envpol.2019.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Microcystis aeruginosa is one of the main species of cyanobacteria that causes water blooms. M. aeruginosa can release into the water several types of microcystins (MCs), which are harmful to aquatic organisms and even humans. However, few studies have investigated the hepatotoxicity of M. aeruginosa itself in zebrafish in environments that simulate natural aquatic systems. The objective of this study was to evaluate the hepatotoxicity of M. aeruginosa in adult zebrafish (Danio rerio) after short-term (96 h) exposure and to elucidate the potential underlying mechanisms. Distinct histological changes in the liver, such as enlargement of the peripheral nuclei and sinusoids and the appearance of fibroblasts, were observed in zebrafish grown in M. aeruginosa culture. In addition, antioxidant enzyme activity was activated and protein phosphatase (PP) activity was significantly decreased with increasing microalgal density. A proteomic analysis revealed alterations in a number of protein pathways, including ribosome translation, immune response, energy metabolism and oxidative phosphorylation pathways. Western blot and real-time PCR analyses confirmed the results of the proteomic analysis. All results indicated that M. aeruginosa could disrupt hepatic functions in adult zebrafish, thus highlighting the necessity of ecotoxicity assessments for M. aeruginosa at environmentally relevant densities.
Collapse
Affiliation(s)
- Benben Du
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
25
|
Ochkasova AS, Meschaninova MI, Venyaminova AG, Ivanov AV, Graifer DM, Karpova GG. The human ribosome can interact with the abasic site in mRNA via a specific peptide of the uS3 protein located near the mRNA entry channel. Biochimie 2018; 158:117-125. [PMID: 30594661 DOI: 10.1016/j.biochi.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
The small subunit ribosomal protein uS3 is a critically important player in the ribosome-mRNA interactions during translation and has numerous functions not directly related to protein synthesis in eukaryotes. A peculiar feature of the human uS3 protein is the ability of its fragment 55-64 exposed on the 40S subunit surface near the mRNA entry channel to form cross-links with 3'-terminal dialdehyde derivatives of various unstructured RNAs and with abasic sites in single-stranded DNAs. Here we showed that the ability of the above uS3 fragment to cross-link to abasic sites in DNAs is inherent only in mature cytoplasmic 40S subunits, but not nuclear pre-40S particles, which implies that it may be relevant to the ribosome-mRNA interplay. To clarify this issue, we investigated interactions of human ribosomes with synthetic mRNA analogues bearing an abasic site protected by a photocleavable group at the 3'-termini. We found that these mRNA analogues can form specific complexes with 80S ribosomes and 40S subunits, where the undamaged upstream part of the analogue is fixed in the mRNA binding channel by interaction with the P-site tRNA, and the downstream part located outside the ribosome is cross-linked to the uS3 fragment 55-64. The yield of cross-links of the mRNA analogues was rather high when their undamaged parts were bound to the mRNA channel prior to deprotection of the abasic site enabling its covalent attachment to the 40S subunit via the uS3 protein, but not vice versa. Based on our findings, one can assume that abasic sites, which can occur in mRNAs due to oxidative stress and ageing, are able to interact directly with the uS3 fragment exposed on the 40S subunit surface near the mRNA entry channel during translation. Consequently, the 40S subunit can be considered as a potential mRNA quality controller.
Collapse
Affiliation(s)
- Anastasia S Ochkasova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Aliya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Anton V Ivanov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
26
|
Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights. Emerg Top Life Sci 2018; 2:453-458. [PMID: 33525822 PMCID: PMC7288999 DOI: 10.1042/etls20180022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 11/17/2022]
Abstract
This issue of Emerging Topics in the Life Sciences highlights current areas of research in the field of archaeal biology and the following introductory editorial sets the stage by considering some of the key developments over the last four decades since the initial identification of the archaea as a unique form of life. Emerging topics from this vibrant and rapidly expanding field of research are considered and detailed further in the articles within this issue.
Collapse
|
27
|
Jia L, Gao M, Yan J, Chen S, Sun J, Hua Q, Ding J, Shi Z. Evaluation of the sub-optimal induction strategies for heterologous proteins production by Pichia pastoris Mut+/MutS strains and related transcriptional and metabolic analysis. World J Microbiol Biotechnol 2018; 34:180. [DOI: 10.1007/s11274-018-2562-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
28
|
Gonçalves TM, de Almeida Regitano LC, Koltes JE, Cesar ASM, da Silva Andrade SC, Mourão GB, Gasparin G, Moreira GCM, Fritz-Waters E, Reecy JM, Coutinho LL. Gene Co-expression Analysis Indicates Potential Pathways and Regulators of Beef Tenderness in Nellore Cattle. Front Genet 2018; 9:441. [PMID: 30344530 PMCID: PMC6182065 DOI: 10.3389/fgene.2018.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Beef tenderness, a complex trait affected by many factors, is economically important to beef quality, industry, and consumer’s palatability. In this study, RNA-Seq was used in network analysis to better understand the biological processes that lead to differences in beef tenderness. Skeletal muscle transcriptional profiles from 24 Nellore steers, selected by extreme estimated breeding values (EBVs) for shear force after 14 days of aging, were analyzed and 22 differentially expressed transcripts were identified. Among these were genes encoding ribosomal proteins, glutathione transporter ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (ABCC4), and synaptotagmin IV (SYT4). Complementary co-expression analyses using Partial Correlation with Information Theory (PCIT), Phenotypic Impact Factor (PIF) and the Regulatory Impact Factor (RIF) methods identified candidate regulators and related pathways. The PCIT analysis identified ubiquitin specific peptidase 2 (USP2), growth factor receptor-bound protein 10 (GBR10), anoctamin 1 (ANO1), and transmembrane BAX inhibitor motif containing 4 (TMBIM4) as the most differentially hubbed (DH) transcripts. The transcripts that had a significant correlation with USP2, GBR10, ANO1, and TMBIM4 enriched for proteasome KEGG pathway. RIF analysis identified microRNAs as candidate regulators of variation in tenderness, including bta-mir-133a-2 and bta-mir-22. Both microRNAs have target genes present in the calcium signaling pathway and apoptosis. PIF analysis identified myoglobin (MB), enolase 3 (ENO3), and carbonic anhydrase 3 (CA3) as potentially having fundamental roles in tenderness. Pathways identified in our study impacted in beef tenderness included: calcium signaling, apoptosis, and proteolysis. These findings underscore some of the complex molecular mechanisms that control beef tenderness in Nellore cattle.
Collapse
Affiliation(s)
| | | | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Sónia Cristina da Silva Andrade
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | - Gustavo Gasparin
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | | | - Elyn Fritz-Waters
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
29
|
Zhang L, Wang W, Zhu B, Wang X. Regulatory Roles of Mitochondrial Ribosome in Lung Diseases and Single Cell Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:183-200. [PMID: 29178077 DOI: 10.1007/978-981-10-6674-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitochondria have the most vital processes in eukaryotic cells to produce ATP composed of polypeptides that are produced via ribosomes, as oxidative phosphorylation. Initially, studies regarding human mitochondrial ribosomes were performed in the model system, bovine mitochondrial ribosome, to investigate how ribosomes are biosynthesized and evolved as well as what their structure and function are. Advances in X-ray crystallography have led to dramatic progresses in structural studies of the ribosome. In recent years, there has been a growing interest in the properties of the mitochondrial ribosome. Although one of its main functions is the production of ATP, it was also linked to multiple diseases. A key area that remains unexplored and requires investigation and exploration is how mitochondrial ribosomal RNA (mt-rRNA) variations can affect the mitochondrial ribosomes in developing disease. This review summarizes the structure, elements, functions, and regulatory roles in associated diseases. With the continuous development of technology, studies on the mechanism of mitochondrial ribosome related diseases are crucial, in order to identify methods of prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
30
|
Exploring contacts of eRF1 with the 3'-terminus of the P site tRNA and mRNA stop signal in the human ribosome at various translation termination steps. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:782-793. [PMID: 28457996 DOI: 10.1016/j.bbagrm.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022]
Abstract
Here we employed site-directed cross-linking with the application of tRNA and mRNA analogues bearing an oxidized ribose at the 3'-terminus to investigate mutual arrangement of the main components of translation termination complexes formed on the human 80S ribosome bound with P site deacylated tRNA using eRF1•eRF3•GTP or eRF1 alone. In addition, we applied a model complex obtained in the same way with eRF1•eRF3•GMPPNP. We found that eRF3 content in the complexes with GTP and GMPPNP is similar, proving that eRF3 does not leave the ribosome after GTP hydrolysis. Our cross-linking data allowed determining locations of the 3'-terminus of the P site tRNA relatively the eRF1 M domain and of the mRNA stop signal toward the N domain and the ribosomal decoding site at the nucleotide-peptide resolution level. Our results indicate that locations of these components do not change after peptide release up to post-termination pre-recycling state, and the positioning of the mRNA stop signal remains similar to that when eRF1 recognizes it. Besides, we found that in all the complexes studied eRF1 shielded the N-terminal part of ribosomal protein eS30 from the interaction with the nucleotide adjacent to stop codon observed with pre-termination ribosome free of eRFs. Altogether, our findings brought important information on contacts of the key structural elements of eRF1, tRNA and mRNA in the ribosomal complexes including those mimicking different translation termination steps, thereby providing a deeper understanding of molecular mechanisms underlying events occurring in the course of protein synthesis termination in mammals.
Collapse
|
31
|
Ohmayer U, Gil-Hernández Á, Sauert M, Martín-Marcos P, Tamame M, Tschochner H, Griesenbeck J, Milkereit P. Studies on the Coordination of Ribosomal Protein Assembly Events Involved in Processing and Stabilization of Yeast Early Large Ribosomal Subunit Precursors. PLoS One 2015; 10:e0143768. [PMID: 26642313 PMCID: PMC4671574 DOI: 10.1371/journal.pone.0143768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022] Open
Abstract
Cellular production of ribosomes involves the formation of highly defined interactions between ribosomal proteins (r-proteins) and ribosomal RNAs (rRNAs). Moreover in eukaryotic cells, efficient ribosome maturation requires the transient association of a large number of ribosome biogenesis factors (RBFs) with newly forming ribosomal subunits. Here, we investigated how r-protein assembly events in the large ribosomal subunit (LSU) rRNA domain II are coordinated with each other and with the association of RBFs in early LSU precursors of the yeast Saccharomyces cerevisiae. Specific effects on the pre-ribosomal association of RBFs could be observed in yeast mutants blocked in LSU rRNA domain II assembly. Moreover, formation of a cluster of r-proteins was identified as a downstream event in LSU rRNA domain II assembly. We analyzed in more detail the functional relevance of eukaryote specific bridges established by this r-protein cluster between LSU rRNA domain II and VI and discuss how they can support the stabilization and efficient processing of yeast early LSU precursor RNAs.
Collapse
Affiliation(s)
- Uli Ohmayer
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Martina Sauert
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Salamanca, Spain
- * E-mail: (MT); (HT); (JG); (PM)
| | - Herbert Tschochner
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (MT); (HT); (JG); (PM)
| | - Joachim Griesenbeck
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (MT); (HT); (JG); (PM)
| | - Philipp Milkereit
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (MT); (HT); (JG); (PM)
| |
Collapse
|
32
|
Xu J, Zhang P, Kusakabe T, Mon H, Li Z, Zhu L, Iiyama K, Banno Y, Morokuma D, Lee JM. Comparative proteomic analysis of hemolymph proteins from Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-sensitive or -resistant silkworm strains during infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:36-47. [DOI: 10.1016/j.cbd.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023]
|
33
|
Sharifulin DE, Grosheva AS, Bartuli YS, Malygin AA, Meschaninova MI, Ven'yaminova AG, Stahl J, Graifer DM, Karpova GG. Molecular contacts of ribose-phosphate backbone of mRNA with human ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:930-9. [PMID: 26066980 DOI: 10.1016/j.bbagrm.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 02/05/2023]
Abstract
In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed.
Collapse
Affiliation(s)
- Dmitri E Sharifulin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Anastasia S Grosheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yulia S Bartuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Aliya G Ven'yaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Joachim Stahl
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
34
|
Yan G, Yan X. Ribosomal proteomics: Strategies, approaches, and perspectives. Biochimie 2015; 113:69-77. [PMID: 25869001 DOI: 10.1016/j.biochi.2015.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
Over the past few decades, proteomic research has seen unprecedented development due to technological advancement. However, whole-cell proteomics still has limitations with respect to sample complexity and the accuracy of determining protein locations. To deal with these limitations, several subcellular proteomic studies have been initiated. Nevertheless, compared to other subcellular proteomic fields, such as mitochondrial proteomics, ribosomal proteomics has lagged behind due to the long-held idea that the ribosome is just a translation machine. Recently, with the proposed ribosome filter hypothesis and subsequent studies of ribosome-specific regulatory capacity, ribosomal proteomics has become a promising chapter for both proteomic and ribosomal research. In this review, we discuss the current strategies and approaches in ribosomal proteomics and the efficacies as well as disadvantages of individual approaches for further improvement.
Collapse
Affiliation(s)
- Guokai Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|