1
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024; 19:e202300447. [PMID: 37926686 DOI: 10.1002/cmdc.202300447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Anirudh G Raj
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Pandurangan Nanjan
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry CNR, via Paolo Gaifami 18, 95126, Catania, Italy
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
3
|
Liao Y, Hu K, Liu W, Wang W, Qiu H, Pan S, Lv Q, Xu G. Bortezomib inhibits hepatocellular carcinoma via the Hippo-Yes-associated protein signalling pathway. Basic Clin Pharmacol Toxicol 2023; 132:297-311. [PMID: 36585038 DOI: 10.1111/bcpt.13832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the principle causes of cancer-associated death throughout the world. However, the patients with HCC are insensitive to traditional drugs and lack effective therapeutic drugs. Dysregulation of Hippo-Yes-associated protein (YAP) signalling is closely associated with HCC. Bortezomib (BTZ) is mainly used in clinical multiple myeloma. It has recently been confirmed that BTZ could suppress cell proliferation in many different types of cancer. Nevertheless, the precise effects of BTZ on HCC and its possible interactions with the Hippo-YAP signalling pathway in HCC cells remain largely unknown. In this study, HCC cell lines (HepG2 and Huh7) and nude mice with xenograft tumours were used to evaluate the influences of BTZ. Furthermore, we focused on exploring whether BTZ exerts its anti-HCC effect through the Hippo-YAP signalling pathway and aimed to lay a theoretical foundation for BTZ as a potential therapeutic drug for HCC. Herein, our results disclose a new mechanism of BTZ in controlling the cell growth of HCC. BTZ downregulates the level of YAP by promoting LATS1 expression to inhibit the growth of HCC cells, which leads to the phosphorylation of YAP and limits YAP nuclear translocation. In sum, our data confirmed that the Hippo-YAP signalling pathway mediates the anti-HCC effects of BTZ.
Collapse
Affiliation(s)
- Yu Liao
- College of Life Sciences, Nanjing Normal University, Nanjing, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Kejun Hu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wangwang Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Huanhuan Qiu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shumin Pan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qi Lv
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guanglin Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Tonon F, Cemazar M, Kamensek U, Zennaro C, Pozzato G, Caserta S, Ascione F, Grassi M, Guido S, Ferrari C, Cansolino L, Trotta F, Kuzmanov BG, Forte G, Martino F, Perrone F, Bomben R, Gattei V, Elvassore N, Murano E, Truong NH, Olson M, Farra R, Grassi G, Dapas B. 5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers (Basel) 2022; 14:1630. [PMID: 35406401 PMCID: PMC8996928 DOI: 10.3390/cancers14071630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.); (B.G.K.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.); (B.G.K.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy; (C.Z.); (G.P.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy; (C.Z.); (G.P.)
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy; (S.C.); (F.A.); (S.G.)
- CEINGE Advanced Biotechnologies, via Gaetano Salvatore, 486, I-80145 Napoli, Italy
| | - Flora Ascione
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy; (S.C.); (F.A.); (S.G.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy;
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy; (S.C.); (F.A.); (S.G.)
- CEINGE Advanced Biotechnologies, via Gaetano Salvatore, 486, I-80145 Napoli, Italy
| | - Cinzia Ferrari
- Department of Clinic-Surgical Sciences, Laboratory of Experimental Surgery and Animal Facility, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (C.F.); (L.C.)
| | - Laura Cansolino
- Department of Clinic-Surgical Sciences, Laboratory of Experimental Surgery and Animal Facility, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (C.F.); (L.C.)
| | - Francesco Trotta
- Department of General Surgery, Maggiore Hospital, Largo Donatori del Sangue 1, I-26900 Lodi, Italy;
| | - Biljana Grcar Kuzmanov
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.); (B.G.K.)
| | - Giancarlo Forte
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic; (G.F.); (F.M.)
| | - Fabiana Martino
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic; (G.F.); (F.M.)
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, Istituto di Ricovero a Cura a Carattere Scientifico IRCCS, 33081 Aviano, Italy; (R.B.); (V.G.)
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, Istituto di Ricovero a Cura a Carattere Scientifico IRCCS, 33081 Aviano, Italy; (R.B.); (V.G.)
| | - Nicola Elvassore
- Industrial Engineering Department, University of Padova, Via Francesco Marzolo, 9, I-35131 Padova, Italy;
| | | | - Nhung Hai Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Michael Olson
- Department of Chemistry and Biology, X University, MaRS Discovery District, West Tower 661 University Avenue, Toronto, ON M5G 1M1, Canada;
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (F.T.); (F.P.); (B.D.)
| |
Collapse
|
5
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
6
|
Chen K, Hou Y, Liao R, Li Y, Yang H, Gong J. LncRNA SNHG6 promotes G1/S-phase transition in hepatocellular carcinoma by impairing miR-204-5p-mediated inhibition of E2F1. Oncogene 2021; 40:3217-3230. [PMID: 33824472 DOI: 10.1038/s41388-021-01671-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that long noncoding RNAs (lncRNAs) function as competitive endogenous RNA (ceRNA) targeting proteins and genes; however, the role of lncRNAs in hepatocellular carcinoma (HCC) is not well understood. We investigated the mechanism by which lncRNA SNHG6 promotes the development of HCC. RT-qPCR revealed upregulated lncRNA SNHG6 in the HCC setting. Elevated SNHG6 expression was indicative of poor prognosis in patients with HCC. SNHG6 overexpression resulted in increased cyclin D1, cyclin E1, and E2F1 expression both in vitro and in vivo. SNHG6 also promoted HCC cell proliferation by enhancing G1-S phase transition in vitro. Dual luciferase reporter assays, RIP, and RNA pull-down assays demonstrated SNHG6 competitively bound to miR-204-5p and inhibited its expression preventing miR-204-5p from targeting E2F1. Overexpression of miR-204-5p abolished the effect of SNHG6. Our data suggest that SNHG6 functions as a ceRNA that targets miR-204-5p resulting in an increased E2F1 expression and enhanced G1-S phase transition, thereby promoting the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Kai Chen
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Yifu Hou
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- The Second Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
7
|
Sun Q, Fan G, Zhuo Q, Dai W, Ye Z, Ji S, Xu W, Liu W, Hu Q, Zhang Z, Liu M, Yu X, Xu X, Qin Y. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif 2020; 53:e12816. [PMID: 32347623 PMCID: PMC7260075 DOI: 10.1111/cpr.12816] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Accumulated evidence suggests that Pin1 contributes to oncogenesis of diverse cancers. However, the underlying mechanism of oncogenic function of Pin1 in PDAC requires further exploration. MATERIALS AND METHODS IHC was performed using PDAC tissues. Western blot, PCR, immunofluorescence and transwell were performed using cell lines. GSEA were applied for possible downstream pathways. ChIP assay and dual luciferase were used for assessment of transcriptional activity. RESULTS Both Pin1 and IL-18 levels are increased in primary PDAC tissues and that their levels are positively correlated. High expression of IL-18 is a predictor of poor prognoses. Pin1 promoted pancreatic cancer cell proliferation and motility by increasing IL-18 expression, while Pin1 knockdown also inhibited the tumour-promoting effect of IL-18. Both Pin1 and IL-18 could enhance the NFκB activity in pancreatic cancer cells. When bound to the p65 protein, Pin1 promoted p65 phosphorylation and its nuclear translocation. In the nucleus, Pin1 and p65 simultaneously bound to the IL-18 promoter and enhanced IL-18 transcription. In addition, recruitment of p65 to the IL-18 promoter was decreased in Pin1-silenced cells. CONCLUSIONS Our study improves the understanding of Pin1 in tumour-promoting inflammation in PDAC, which is a hallmark of cancer; Pin1 interacted with p65 in PDAC and enhanced NF-κB signalling and downstream transcriptional activation of IL-18, with increased IL-18 continuously activating NF-κB signalling, which then forms a positive feedback loop.
Collapse
|
8
|
Colak D, Al-Harazi O, Mustafa OM, Meng F, Assiri AM, Dhar DK, Broering DC. RNA-Seq transcriptome profiling in three liver regeneration models in rats: comparative analysis of partial hepatectomy, ALLPS, and PVL. Sci Rep 2020; 10:5213. [PMID: 32251301 PMCID: PMC7089998 DOI: 10.1038/s41598-020-61826-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
The liver is a unique organ that has a phenomenal capacity to regenerate after injury. Different surgical procedures, including partial hepatectomy (PH), intraoperative portal vein ligation (PVL), and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) show clinically distinct recovery patterns and regeneration. The observable clinical differences likely mirror some underlying variations in the patterns of gene activation and regeneration pathways. In this study, we provided a comprehensive comparative transcriptomic analysis of gene regulation in regenerating rat livers temporally spaced at 24 h and 96 h after PH, PVL, and ALPPS. The time-dependent factors appear to be the most important determinant of post-injury alterations of gene expression in liver regeneration. Gene expression profile after ALPPS showed more similar expression pattern to the PH than the PVL at the early phase of the regeneration. Early transcriptomic changes and predicted upstream regulators that were found in all three procedures included cell cycle associated genes (E2F1, CCND1, FOXM1, TP53, and RB1), transcription factors (Myc, E2F1, TBX2, FOXM1), DNA replication regulators (CDKN1A, EZH2, RRM2), G1/S-transition regulators (CCNB1, CCND1, RABL6), cytokines and growth factors (CSF2, IL-6, TNF, HGF, VEGF, and EGF), ATM and p53 signaling pathways. The functional pathway, upstream, and network analyses revealed both unique and overlapping molecular mechanisms and pathways for each surgical procedure. Identification of molecular signatures and regenerative signaling pathways for each surgical procedure further our understanding of key regulators of liver regeneration as well as patient populations that are likely to benefit from each procedure.
Collapse
Affiliation(s)
- Dilek Colak
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Olfat Al-Harazi
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Osama M Mustafa
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fanwei Meng
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Dipok K Dhar
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK.
| | - Dieter C Broering
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Li C, Zhang W, Yang H, Xiang J, Wang X, Wang J. Integrative analysis of dysregulated lncRNA-associated ceRNA network reveals potential lncRNA biomarkers for human hepatocellular carcinoma. PeerJ 2020; 8:e8758. [PMID: 32201648 PMCID: PMC7071826 DOI: 10.7717/peerj.8758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/16/2020] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive cancer with a poor prognosis and a high incidence. The molecular changes and novel biomarkers of HCC need to be identified to improve the diagnosis and prognosis of this disease. We investigated the current research concentrations of HCC and identified the transcriptomics-related biomarkers of HCC from The Cancer Genome Atlas (TGCA) database. Methods We investigated the current research concentrations of HCC using literature metrology analysis for studies conducted from 2008 to 2018. We identified long noncoding RNAs (lncRNAs) that correlated with the clinical features and survival prognoses of HCC from The Cancer Genome Atlas (TGCA) database. Differentially expressed genes (lncRNAs, miRNAs, and mRNAs) were also identified by TCGA datasets in HCC tumor tissues. A lncRNA competitive endogenous RNA (ceRNA) network was constructed from lncRNAs based on intersected lncRNAs. Survival times and the association between the expression levels of the key lncRNAs of the ceRNA network and the clinicopathological characteristics of HCC patients were analyzed using TCGA. Real-time polymerase chain reaction (qRT-PCR) was used to validate the reliability of the results in tissue samples from 20 newly-diagnosed HCC patients. Results Analysis of the literature pertaining to HCC research revealed that current research is focused on lncRNA functions in tumorigenesis and tumor development. A total of 128 HCC dysregulated lncRNAs were identified; 66 were included in the co-expressed ceRNA network. We analyzed survival times and the associations between the expression of 66 key lncRNAs and the clinicopathological features of the HCC patients identified from TCGA. Twenty-six lncRNAs were associated with clinical features of HCC (P < 0.05) and six key lncRNAs were associated with survival time (log-rank test P < 0.05). Six key lncRNAs were selected for the validation of their expression levels in 20 patients with newly diagnosed HCC using qRT-PCR. Consistent fold changes in the trends of up and down regulation between qRT-PCR validation and TCGA proved the reliability of our bioinformatics analysis. Conclusions We used integrative bioinformatics analysis of the TCGA datasets to improve our understanding of the regulatory mechanisms involved with the functional features of lncRNAs in HCC. The results revealed that lncRNAs are potential diagnostic and prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu province, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu province, China
| | - Hanteng Yang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu province, China
| | - Jilian Xiang
- Department of gastroenterology, Third People's Hospital of Gansu province, Lanzhou, Gansu province, China
| | - Xinghua Wang
- Department of gastrointestinal surgery, Gansu Wuwei Tumor Hospital, Wuwei, Gansu province, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu province, China
| |
Collapse
|
10
|
Sari G, Okat Z, Sahin A, Karademir B. Proteasome Inhibitors in Cancer Therapy and their Relation to Redox Regulation. Curr Pharm Des 2019; 24:5252-5267. [PMID: 30706779 DOI: 10.2174/1381612825666190201120013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/25/2019] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is important for the maintenance of cell survival. Under physiological conditions, redox system works in a balance and involves activation of many signaling molecules. Regulation of redox balance via signaling molecules is achieved by different pathways and proteasomal system is a key pathway in this process. Importance of proteasomal system on signaling pathways has been investigated for many years. In this direction, many proteasome targeting molecules have been developed. Some of them are already in the clinic for cancer treatment and some are still under investigation to highlight underlying mechanisms. Although there are many studies done, molecular mechanisms of proteasome inhibitors and related signaling pathways need more detailed explanations. This review aims to discuss redox status and proteasomal system related signaling pathways. In addition, cancer therapies targeting proteasomal system and their effects on redox-related pathways have been summarized.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Okan University, 34959, Tuzla, I stanbul, Turkey
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| |
Collapse
|
11
|
Zhu M. Inhibitory effects of bortezomib in a subcutaneous tumor model of H22 mouse hepatocarcinoma cells. Pathol Res Pract 2019; 215:152388. [PMID: 30914235 DOI: 10.1016/j.prp.2019.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the inhibition effects and mechanism of bortezomib in a subcutaneous H22 mouse hepatocarcinoma model. METHODS A subcutaneous xenograft model was constructed by subcutaneous injection of H22 cells in mice. The xenograft mice was randomly divided into bortezomib and control groups (n = 8 each). The bortezomib group was injected with 0.5 mg/kg bortezomib in saline via tail vein once every four days for a total of 4 times. The control group was intravenously given an equal volume of saline. The tumor size was measured every four days. At day 19, subcutaneous xenografts were obtained and the expression of apoptosis-related proteins in tumor was detected by immunochemical staining. RESULTS The tumor volume of H22 xenografts in bortezomib group was significantly smaller than that in control group on day 19 (p = 0.004). The tumor volume/mouse weight ratio in bortezomib group was significantly lower compared with control group on day 13, 16 and 19 (all p < 0.05). The bortezomib group exhibited significantly higher expression of pro-apoptotic protein TNF-α (p = 0.032), and lower expression of anti-apoptotic protein XIAP, Stat3, and Survivin (p = 0.024, 0.016, and 0.039, respectively). CONCLUSION Bortezomib effectively inhibited the growth of H22 xenografts without affecting the mouse weight. The anti-tumor effects of bortezomib is associated with its stimulation on tumor cell apoptosis.
Collapse
Affiliation(s)
- Mingao Zhu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
12
|
Farra R, Dapas B, Grassi M, Benedetti F, Grassi G. E2F1 as a molecular drug target in ovarian cancer. Expert Opin Ther Targets 2019; 23:161-164. [PMID: 30724632 DOI: 10.1080/14728222.2019.1579797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Rossella Farra
- a Department of Life Sciences , Cattinara University Hospital, Trieste University , Trieste , Italy
| | - Barbara Dapas
- a Department of Life Sciences , Cattinara University Hospital, Trieste University , Trieste , Italy
| | - Mario Grassi
- b Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Fabio Benedetti
- c Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Trieste , Trieste , Italy
| | - Gabriele Grassi
- a Department of Life Sciences , Cattinara University Hospital, Trieste University , Trieste , Italy
| |
Collapse
|
13
|
Huang IT, Dhungel B, Shrestha R, Bridle KR, Crawford DHG, Jayachandran A, Steel JC. Spotlight on Bortezomib: potential in the treatment of hepatocellular carcinoma. Expert Opin Investig Drugs 2018; 28:7-18. [PMID: 30474444 DOI: 10.1080/13543784.2019.1551359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study reviews the evidence for the use of Bortezomib (BZB), a first-in-class proteasome inhibitor in advanced Hepatocellular carcinoma (HCC). This review aims to delineate the role of BZB within the management of non-surgical and metastatic HCC, either as an alternative or as an adjunct to the current treatment paradigm. AREAS COVERED In addition to BZB pharmacology and mechanism of action, safety and tolerance profiles of the drug obtained from clinical trials are explored. The utility of BZB as a therapeutic agent either alone or in combination with other therapies against HCC, including its application in both preclinical and clinical settings has been reviewed. In particular, we highlight the importance of preclinical evaluation of BZB as a combinatorial agent in synergism with other therapies for the use in the management of HCC. EXPERT OPINION There has been much interest surrounding the use of BZB, a first-in-class proteasome inhibitor for HCC therapy. The discernment of outcomes of BZB clinical trials for HCC need to take into consideration the disease-specific factors that can affect survival outcomes including patient selection and aetiological differences. Further preclinical testing of BZB in combination with other therapeutic modalities can be important for eliciting enhanced anti-HCC effects.
Collapse
Affiliation(s)
- I-Tao Huang
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Bijay Dhungel
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Ritu Shrestha
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Kim R Bridle
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Darrell H G Crawford
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Aparna Jayachandran
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Jason C Steel
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,c School of Health, Medical and Applied Sciences , CQ University , Rockhampton , Australia
| |
Collapse
|
14
|
Pu W, Li J, Zheng Y, Shen X, Fan X, Zhou JK, He J, Deng Y, Liu X, Wang C, Yang S, Chen Q, Liu L, Zhang G, Wei YQ, Peng Y. Targeting Pin1 by inhibitor API-1 regulates microRNA biogenesis and suppresses hepatocellular carcinoma development. Hepatology 2018; 68:547-560. [PMID: 29381806 DOI: 10.1002/hep.29819] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. CONCLUSION Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018).
Collapse
Affiliation(s)
- Wenchen Pu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Jiao Li
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Yuanyuan Zheng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Xianyan Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences
| | - Xin Fan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Jian-Kang Zhou
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Juan He
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Yulan Deng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Xuesha Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences
| | - Shengyong Yang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Qiang Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Lunxu Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Guolin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences
| | - Yu-Quan Wei
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy
| |
Collapse
|
15
|
Farra R, Musiani F, Perrone F, Čemažar M, Kamenšek U, Tonon F, Abrami M, Ručigaj A, Grassi M, Pozzato G, Bonazza D, Zanconati F, Forte G, El Boustani M, Scarabel L, Garziera M, Russo Spena C, De Stefano L, Salis B, Toffoli G, Rizzolio F, Grassi G, Dapas B. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness. Molecules 2018; 23:777. [PMID: 29597300 PMCID: PMC6017305 DOI: 10.3390/molecules23040777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Federica Tonon
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Aleš Ručigaj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Gabriele Pozzato
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Deborah Bonazza
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Fabrizio Zanconati
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Studenstka 6, 656 91 Brno, Czech Republic.
| | - Maguie El Boustani
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy.
| | - Lucia Scarabel
- C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Concetta Russo Spena
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Chemistry, University of Trieste, 34100 Trieste, Italy.
| | - Lucia De Stefano
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Chemistry, University of Trieste, 34100 Trieste, Italy.
| | - Barbara Salis
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Flavio Rizzolio
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University, via Torino 155, I-30172 Mestre (Venezia), Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| |
Collapse
|
16
|
Milcovich G, Lettieri S, Antunes FE, Medronho B, Fonseca AC, Coelho JFJ, Marizza P, Perrone F, Farra R, Dapas B, Grassi G, Grassi M, Giordani S. Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
Affiliation(s)
- Gesmi Milcovich
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Stefania Lettieri
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Bruno Medronho
- Faculty of Sciences and Technology (MEDITBIO), University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Paolo Marizza
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, Kongens Lyngby 2800, Denmark
| | - Francesca Perrone
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Rossella Farra
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Silvia Giordani
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy; Chemistry Department, Università di Torino, Via Giuria 7, 10125 Turin, Italy.
| |
Collapse
|
17
|
Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, Perrone F, Grassi M, Pozzato G, Grassi G, Dapas B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm 2017; 525:397-406. [PMID: 28119125 DOI: 10.1016/j.ijpharm.2017.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,β-poly-(N-2-hydroxyethyl)-d,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gene product involved in HCC. The presence of GAL residues in the polyplexes allows the targeting of HCC cells that express the asialo-glycoprotein receptor (ASGP-R). In these cells, but not in ASGP-R non-expressing cells, PHEA-DETA-PEG-GAL/siE2F1 polyplexes induce the reduction of the mRNA and protein levels of E2F1 and of E2F1-regulated genes, all involved in the promotion of the G1/S phase transition. This results in a decrease of cell proliferation with a G1/G0 phase cells accumulation. Notably, removal of GAL residue almost completely abrogates the targeting capacity of the developed polyplexes. In conclusion, the generated polyplexes demonstrate the potential to effectively contributing to the development of novel anti-HCC therapeutic approaches via a siRNA-targeted delivery.
Collapse
Affiliation(s)
- Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Emanuela Fabiola Craparo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Carla Sardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | | | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of 'Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|
18
|
Farra R, Scaggiante B, Guerra C, Pozzato G, Grassi M, Zanconati F, Perrone F, Ferrari C, Trotta F, Grassi G, Dapas B. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int J Pharm 2017; 525:367-376. [PMID: 28229942 DOI: 10.1016/j.ijpharm.2017.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | | | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Cinzia Ferrari
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy
| | - Francesco Trotta
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy; U.O. di Chirurgia Generale e Toracica, Ospedale Maggiore, Lodi, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|
19
|
Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, Russo Spena C, Salis B, De Stefano L, Toffoli G, Rizzolio F, Tonon F, Abrami M, Chiarappa G, Pozzato G, Forte G, Grassi G, Dapas B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2017; 14:797-810. [PMID: 28266887 DOI: 10.1080/17425247.2017.1292247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
hepatocellular carcinoma (hcc) is the predominant form of primary liver cancer and the second leading cause of cancer-associated mortality worldwide. available therapies for hcc have limited efficacy due to often late diagnosis and the general resistance of hcc to anti-cancer agents; therefore, the development of novel therapeutics is urgently required. small-interfering rna (sirna) molecules are short, double-stranded rnas that specifically recognize and bind the mrna of a target gene to inhibit gene expression. despite the great therapeutic potential of sirnas towards many human tumors including hcc, their use is limited by suboptimal delivery. Areas covered: In this review, we outline the current data regarding the therapeutic potential of siRNAs in HCC and describe the development of effective siRNA delivery systems. We detail the key problems associated with siRNA delivery and discuss the possible solutions. Finally, we provide examples of the various siRNA delivery strategies that have been employed in animal models of HCC and in human patients enrolled in clinical trials. Expert opinion: Despite the existing difficulties in siRNA delivery for HCC, the increasing scientific attention and breakthrough studies in this field is facilitating the design of novel and efficient technical solutions that may soon find practical applications.
Collapse
Affiliation(s)
- Lucia Scarabel
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Francesca Perrone
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| | - Marica Garziera
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Rossella Farra
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Mario Grassi
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Francesco Musiani
- d Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Concetta Russo Spena
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Barbara Salis
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Lucia De Stefano
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Flavio Rizzolio
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Federica Tonon
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Michela Abrami
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| | - Gianluca Chiarappa
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Gabriele Pozzato
- e Department of 'Scienze Mediche, Chirurgiche e della Salute' , Cattinara University Hospital, University of Trieste , Trieste , Italy
| | - Giancarlo Forte
- f Center for Translational Medicine, International Clinical Research Center , St. Anne's University Hospital , Brno , Czech Republic
| | - Gabriele Grassi
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
- e Department of 'Scienze Mediche, Chirurgiche e della Salute' , Cattinara University Hospital, University of Trieste , Trieste , Italy
| | - Barbara Dapas
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| |
Collapse
|
20
|
Confalonieri M, Buratti E, Grassi G, Bussani R, Chilosi M, Farra R, Abrami M, Stuani C, Salton F, Ficial M, Confalonieri P, Zandonà L, Romano M. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease. PLoS One 2017; 12:e0172130. [PMID: 28199407 PMCID: PMC5310884 DOI: 10.1371/journal.pone.0172130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.
Collapse
Affiliation(s)
- Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rossana Bussani
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Marco Chilosi
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Miriam Ficial
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Paola Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Lorenzo Zandonà
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
21
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Tonon F, Zennaro C, Dapas B, Carraro M, Mariotti M, Grassi G. Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing. Int J Pharm 2016; 515:583-591. [PMID: 27989824 DOI: 10.1016/j.ijpharm.2016.10.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
Abstract
We developed a novel, rapid and cost-effective Zebrafish xenograft model of hepatocellular carcinoma (HCC) for drug screening in the disease. Following injection into the yolk sack of Zebrafish larvae of the human HCC cell line JHH6 stained by a vital dye, tumor mass growth was followed by fluorescence microscopy and by human Ki67 quantification. Tumor induced neo-angiogenesis was evaluated by alkaline phosphatase staining of the vessels, by using the Tg(fli1:EGFP)y1 strain of Zebrafish and by the quantification of the zebrafish vascular endothelial growth factor and of its receptor. We show that it is feasible to micro-inject JHH6 in Zebrafish larvae, that injected cells can grow for different days and that this induces a marked neo-angiogenesis. Finally, we show that our model allows testing the effects of anti-HCC drugs such as Bortezomib. Compared to more complex HCC mouse models, our model is far less expensive, faster to set up and does not need immunosuppressant treatment. Finally, the model makes use of JHH6, an aggressive form of HCC cell line never tested before in Zebrafish. In conclusion, the possibility to test anti HCC/neo-angiogenesis drugs makes our JHH6 model useful to select therapeutic molecules for a highly vascularized tumor such as HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| | - Michele Carraro
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Massimo Mariotti
- IRCCS Galeazzi Orthopedic Institute Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
23
|
Cheng CW, Leong KW, Tse E. Understanding the role of PIN1 in hepatocellular carcinoma. World J Gastroenterol 2016; 22:9921-9932. [PMID: 28018099 PMCID: PMC5143759 DOI: 10.3748/wjg.v22.i45.9921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase that binds and catalyses isomerization of the specific motif comprising a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) in proteins. PIN1 can therefore induce conformational and functional changes of its interacting proteins that are regulated by proline-directed serine/threonine phosphorylation. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of key phosphoproteins (e.g., cyclin D1, survivin, β-catenin and x-protein of hepatitis B virus) that are involved in the regulation of cell cycle progression, apoptosis, proliferation and oncogenic transformation. PIN1 has been found to be over-expressed in many cancers, including human hepatocellular carcinoma (HCC). It has been shown previously that overexpression of PIN1 contributes to the development of HCC in-vitro and in xenograft mouse model. In this review, we first discussed the aberrant transcription factor expression, miRNAs dysregulation, PIN1 gene promoter polymorphisms and phosphorylation of PIN1 as potential mechanisms underlying PIN1 overexpression in cancers. Furthermore, we also examined the role of PIN1 in HCC tumourigenesis by reviewing the interactions between PIN1 and various cellular and viral proteins that are involved in β-catenin, NOTCH, and PI3K/Akt/mTOR pathways, apoptosis, angiogenesis and epithelial-mesenchymal transition. Finally, the potential of PIN1 inhibitors as an anti-cancer therapy was explored and discussed.
Collapse
|
24
|
Huntington JT, Tang X, Kent LN, Schmidt CR, Leone G. The Spectrum of E2F in Liver Disease--Mediated Regulation in Biology and Cancer. J Cell Physiol 2016; 231:1438-49. [PMID: 26566968 DOI: 10.1002/jcp.25242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Uncoordinated cell growth is one of the fundamental concepts in carcinogenesis and occurs secondary to dysregulation of the cell cycle. The E2Fs are a large family of transcription factors and are key regulators of the cell cycle. The activation of E2Fs is intimately regulated by retinoblastoma 1 (RB1). The RB pathway has been implicated in almost every human malignancy. Recently there have been exciting developments in the E2F field using animal models to better understand the role of E2Fs in vivo. Genetic mouse models have proven essential in implicating E2Fs in hepatocellular carcinoma (HCC) and liver disease. In this review, the general structure and function of E2Fs as well as the role for E2Fs in the development of HCC and liver disease is evaluated. Specifically, what is known about E2Fs in human disease is explored in depth, and future directions are discussed.
Collapse
Affiliation(s)
- Justin T Huntington
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Xing Tang
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lindsey N Kent
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Carl R Schmidt
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Gustavo Leone
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
Shinoda K, Kuboki S, Shimizu H, Ohtsuka M, Kato A, Yoshitomi H, Furukawa K, Miyazaki M. Pin1 facilitates NF-κB activation and promotes tumour progression in human hepatocellular carcinoma. Br J Cancer 2015; 113:1323-31. [PMID: 26461058 PMCID: PMC4815797 DOI: 10.1038/bjc.2015.272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/14/2015] [Accepted: 07/01/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND NF-κB promotes HCC progression; however, therapies targeting NF-κB are not used due to severe adverse reactions. Pin1 is reported to induce tumour progression in vitro. However, the role of Pin1 in HCC is unclear. Moreover, little is known about the mechanism of Pin1-mediated NF-κB activation. METHODS Fresh surgical specimens were collected from 144 HCC patients. Pin1 and NF-κB-p65 expression was evaluated by immunohistochemistry and western blotting. NF-κB activation was assessed by EMSA. RESULTS Pin1 was increased in HCC compared to adjacent liver tissue. The multivariate analysis revealed that high Pin1 expression was an independent factor for poor prognosis. In HCC with high Pin1 expression, tumour size was larger and portal vein invasion was increased. Pin1 expression was correlated with phosphorylated (p-) NF-κB-p65(Thr254) and p-NF-κB-p65(Ser276), and thereby NF-κB activation. Pin1-induced NF-κB activation accelerated cell cycle progression, induced angiogenesis, and inhibited apoptosis. Pin1 knockdown in HCC cells inhibited the phosphorylation of NF-κB-p65(Ser276), and reduced NF-κB activation, which resulted in inhibiting tumour cell progression. When HCC cells were treated with the Pin1 inhibitors, p-NF-κB-p65(Ser276) expression and NF-κB activation was reduced, and cell proliferation was inhibited. CONCLUSIONS Pin1 is associated with aggressive tumour progression and poor prognosis in HCC by mediating NF-κB activation.
Collapse
Affiliation(s)
- Kimio Shinoda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Atsushi Kato
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
26
|
Farra R, Grassi M, Grassi G, Dapas B. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma. World J Gastroenterol 2015; 21:8994-9001. [PMID: 26290628 PMCID: PMC4533033 DOI: 10.3748/wjg.v21.i30.8994] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and represents the third leading cause of cancer-related death worldwide. Current available therapeutic approaches are poorly effective, especially for the advanced forms of the disease. In the last year, short double stranded RNA molecules termed small interfering RNAs (siRNAs) and micro interfering RNAs (miRNA), emerged as interesting molecules with potential therapeutic value for HCC. The practical use of these molecules is however limited by the identification of optimal molecular targets and especially by the lack of effective and targeted HCC delivery systems. Here we focus our discussion on the most recent advances in the identification of siRNAs/miRNAs molecular targets and on the development of suitable siRNA/miRNAs delivery systems.
Collapse
|
27
|
Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett 2015; 379:245-52. [PMID: 26193663 DOI: 10.1016/j.canlet.2015.06.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a complicated tightly controlled system in charge of degrading 80-90% of proteins, and is central to regulating cellular function and keeping protein homeostasis. Therefore, the components of UPS attract considerable attention as potential targets for hepatocellular carcinoma (HCC) therapy. The clinical success of bortezomib in multiple myeloma and mantle cell lymphoma patients has set the precedent for therapeutically targeting this pathway. This review will provide an overview of the UPS in HCC and the current status of therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|