1
|
Pavlova AV, Dolinnaya NG, Zvereva MI, Kubareva EA, Monakhova MV. New DNA Plasmid Model for Studying DNA Mismatch Repair Response to the G4 Structure. Int J Mol Sci 2023; 24:ijms24021061. [PMID: 36674575 PMCID: PMC9863064 DOI: 10.3390/ijms24021061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/08/2023] Open
Abstract
G-quadruplexes (G4s), the most widely studied alternative DNA structures, are implicated in the regulation of the key cellular processes. In recent years, their involvement in DNA repair machinery has become the subject of intense research. Here, we evaluated the effect of G4 on the prokaryotic DNA mismatch repair (MMR) pathway from two bacterial sources with different mismatch repair mechanisms. The G4 folding, which competes with the maintenance of double-stranded DNA, is known to be controlled by numerous opposing factors. To overcome the kinetic barrier of G4 formation, we stabilized a parallel G4 formed by the d(GGGT)4 sequence in a DNA plasmid lacking a fragment complementary to the G4 motif. Unlike commonly used isolated G4 structures, our plasmid with an embedded stable G4 structure contained elements, such as a MutH cleavage site, required to initiate the repair process. G4 formation in the designed construct was confirmed by Taq polymerase stop assay and dimethyl sulfate probing. The G4-carrying plasmid, together with control ones (lacking a looped area or containing unstructured d(GT)8 insert instead of the G4 motif), were used as new type models to answer the question of whether G4 formation interferes with DNA cleavage as a basic function of MMR.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
- Correspondence: ; Tel.: +7-(495)-939-54-11
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| |
Collapse
|
2
|
Loiko AG, Sergeev AV, Genatullina AI, Monakhova MV, Kubareva EA, Dolinnaya NG, Gromova ES. Impact of G-Quadruplex Structures on Methylation of Model Substrates by DNA Methyltransferase Dnmt3a. Int J Mol Sci 2022; 23:ijms231810226. [PMID: 36142137 PMCID: PMC9499004 DOI: 10.3390/ijms231810226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
In mammals, de novo methylation of cytosines in DNA CpG sites is performed by DNA methyltransferase Dnmt3a. Changes in the methylation status of CpG islands are critical for gene regulation and for the progression of some cancers. Recently, the potential involvement of DNA G-quadruplexes (G4s) in methylation control has been found. Here, we provide evidence for a link between G4 formation and the function of murine DNA methyltransferase Dnmt3a and its individual domains. As DNA models, we used (i) an isolated G4 formed by oligonucleotide capable of folding into parallel quadruplex and (ii) the same G4 inserted into a double-stranded DNA bearing several CpG sites. Using electrophoretic mobility shift and fluorescence polarization assays, we showed that the Dnmt3a catalytic domain (Dnmt3a-CD), in contrast to regulatory PWWP domain, effectively binds the G4 structure formed in both DNA models. The G4-forming oligonucleotide displaced the DNA substrate from its complex with Dnmt3a-CD, resulting in a dramatic suppression of the enzyme activity. In addition, a direct impact of G4 inserted into the DNA duplex on the methylation of a specific CpG site was revealed. Possible mechanisms of G4-mediated epigenetic regulation may include Dnmt3a sequestration at G4 and/or disruption of Dnmt3a oligomerization on the DNA surface.
Collapse
Affiliation(s)
- Andrei G. Loiko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence: (A.G.L.); (A.V.S.)
| | - Alexander V. Sergeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence: (A.G.L.); (A.V.S.)
| | - Adelya I. Genatullina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elizaveta S. Gromova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
3
|
Street STG, Peñalver P, O'Hagan MP, Hollingworth GJ, Morales JC, Galan MC. Imide Condensation as a Strategy for the Synthesis of Core-Diversified G-Quadruplex Ligands with Anticancer and Antiparasitic Activity*. Chemistry 2021; 27:7712-7721. [PMID: 33780044 PMCID: PMC8251916 DOI: 10.1002/chem.202100040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/22/2022]
Abstract
A facile imide coupling strategy for the one-step preparation of G-quadruplex ligands with varied core chemistries is described. The G-quadruplex stabilization of a library of nine compounds was examined using FRET melting experiments, and CD, UV-Vis, fluorescence and NMR titrations, identifying several compounds that were capable of stabilizing G-quadruplex DNA with interesting selectivity profiles. The best G4 ligand was identified as compound 3, which was based on a perylene scaffold and exhibited 40-fold selectivity for a telomeric G-quadruplex over duplex DNA. Surprisingly, a tetra-substituted flexible core, compound 11, also exhibited selective stabilization of G4 DNA over duplex DNA. The anticancer and antiparasitic activity of the library was also examined, with the lead compound 3 exhibiting nanomolar inhibition of Trypanosoma brucei with 78-fold selectivity over MRC5 cells. The cellular localization of this compound was also studied via fluorescence microscopy. We found that uptake was time dependant, with localization outside the nucleus and kinetoplast that could be due to strong fluorescence quenching in the presence of small amounts of DNA.
Collapse
Affiliation(s)
- Steven T. G. Street
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of VictoriaDr. S. T. G. StreetVictoriaBC V8P 5C2Canada
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López NeyraCSIC, PTS GranadaAvenida del Conocimiento, 1718016Armilla, GranadaSpain
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina López NeyraCSIC, PTS GranadaAvenida del Conocimiento, 1718016Armilla, GranadaSpain
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| |
Collapse
|
4
|
Zok T, Popenda M, Szachniuk M. ElTetrado: a tool for identification and classification of tetrads and quadruplexes. BMC Bioinformatics 2020; 21:40. [PMID: 32005130 PMCID: PMC6995151 DOI: 10.1186/s12859-020-3385-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Quadruplexes are specific structure motifs occurring, e.g., in telomeres and transcriptional regulatory regions. Recent discoveries confirmed their importance in biomedicine and led to an intensified examination of their properties. So far, the study of these motifs has focused mainly on the sequence and the tertiary structure, and concerned canonical structures only. Whereas, more and more non-canonical quadruplex motifs are being discovered. Results Here, we present ElTetrado, a software that identifies quadruplexes (composed of guanine- and other nucleobase-containing tetrads) in nucleic acid structures and classifies them according to the recently introduced ONZ taxonomy. The categorization is based on the secondary structure topology of quadruplexes and their component tetrads. It supports the analysis of canonical and non-canonical motifs. Besides the class recognition, ElTetrado prepares a dot-bracket and graphical representations of the secondary structure, which reflect the specificity of the quadruplex’s structure topology. It is implemented as a freely available, standalone application, available at https://github.com/tzok/eltetrado. Conclusions The proposed software tool allows to identify and classify tetrads and quadruplexes based on the topology of their secondary structures. It complements existing approaches focusing on the sequence and 3D structure.
Collapse
Affiliation(s)
- Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland.,Poznan Supercomputing and Networking Center, Jana Pawla II 10, Poznan, 61-139, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland. .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland.
| |
Collapse
|
5
|
Pieraccini S, Campitiello M, Carducci F, Davis JT, Mariani P, Masiero S. Playing supramolecular dominoes with light: building and breaking a photoreversible G-quadruplex made from guanosine, boric acid and an azobenzene. Org Biomol Chem 2020; 17:2759-2769. [PMID: 30785179 DOI: 10.1039/c9ob00193j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Addition of azobenzene-derivative 1 in its E configuration to an aqueous solution containing various guanosine borate esters induces a helical G-quartet based self-organization, stabilized by intercalation of the dye. The process is driven, in a domino fashion, by the initial host-guest interaction between the dye and a specific guanosine borate diester, whose structure can be thus assigned. This inclusion complex templates the formation of G-quartets. The quartets, in turn, pile up to form a supramolecular G-quadruplex structure, in which other G species present in solution are progressively included. The G-quadruplex can be reversibly broken and reformed by photoisomerization of the dye. This hierarchical and photosensitive self-assembly is unprecedented for simple guanosine derivatives.
Collapse
Affiliation(s)
- Silvia Pieraccini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, v. S. Giacomo, 11-40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
7
|
Al-Zeer MA, Kurreck J. Deciphering the Enigmatic Biological Functions of RNA Guanine-Quadruplex Motifs in Human Cells. Biochemistry 2018; 58:305-311. [PMID: 30350579 DOI: 10.1021/acs.biochem.8b00904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanine-rich sequences in nucleic acids can form noncanonical structures known as guanine quadruplexes (G-quadruplexes), which constitute a not yet fully elucidated layer of regulatory function for central cellular processes. RNA G-quadruplexes have been shown to be involved in the modulation of translation, the regulation of (alternative) splicing, and the subcellular transport of mRNAs, among other processes. However, in living cells, an equilibrium between the formation of G-quadruplex structures and their unwinding by RNA helicases is likely. The extent to which G-rich sequences adopt G-quadruplex structures in living eukaryotic cells is currently a matter of debate. Multiple lines of evidence confirm the intracellular formation of G-quadruplex structures, such as their detection by immunochemical approaches, fluorogenic probes, and in vivo nuclear magnetic resonance. However, intracellular chemical probing suggests most if not all are in an unfolded state. It is therefore tempting to speculate that some G-quadruplex structures are only temporarily formed when they are required to contribute to the fine-tuning of the processes mentioned above. Future research should focus on the analysis of G-quadruplex formation under physiological conditions, which will allow the re-evaluation of the biological function of G-quadruplex motifs in regulatory processes in their natural environment and at physiological expression levels. This will help in the elucidation of their significance in the regulation of central processes in molecular biology and the exploitation of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry , Technische Universität Berlin , 13355 Berlin , Germany
| | - Jens Kurreck
- Institute of Biotechnology, Department of Applied Biochemistry , Technische Universität Berlin , 13355 Berlin , Germany
| |
Collapse
|