1
|
Zhdanov DD, Gladilina YA, Shisparenok AN. Apoptotic endonuclease EndoG induces alternative splicing of Caspase-2. BIOMEDITSINSKAIA KHIMIIA 2024; 70:218-230. [PMID: 39239896 DOI: 10.18097/pbmc20247004218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Caspase-2 (Casp-2) is an enzyme that regulates the development of apoptosis upon alternative splicing of its mRNA. The long form of Casp-2 (Casp-2L) promotes apoptosis while the short form (Casp-2S) has decreased enzymatic activity and inhibits the development of apoptotic processes. However, very little is known about the mechanism of Casp-2 alternative splicing. Several endonucleases are known to participate in this process. The aim of this study was to determine the role of EndoG in regulation of Casp-2 alternative splicing. Strong correlation between expression levels of EndoG and Casp-2 splice-variants was found in CD4⁺ and CD8⁺ human T lymphocytes. Such correlation increased after incubation of these cells with etoposide. Increased expression of Casp-2S was determined during EndoG over-expression in CD4⁺ T-cells, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. Casp-2 alternative splicing was induced by a 60-mer RNA oligonucleotide in naked nuclei and in cells after transfection. The identified long non-coding RNA of 1016 nucleotides is the precursor of the 60-mer RNA oligonucleotide. Based on the results the following mechanism has been proposed. Casp-2 pre-mRNA is transcribed from the coding DNA strand while long non-coding RNA is transcribed from the template strand of the Casp-2 gene. EndoG digests long non-coding RNA and produces the 60-mer RNA oligonucleotide complementary to the Casp-2 pre-mRNA exon 9 and intron 9 junction place. Interaction of the 60-mer RNA oligonucleotide and Casp-2 pre-mRNA causes alternative splicing.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|
2
|
Zhdanov DD, Gladilina YA, Blinova VG, Abramova AA, Shishparenok AN, Eliseeva DD. Induction of FoxP3 Pre-mRNA Alternative Splicing to Enhance the Suppressive Activity of Regulatory T Cells from Amyotrophic Lateral Sclerosis Patients. Biomedicines 2024; 12:1022. [PMID: 38790984 PMCID: PMC11117958 DOI: 10.3390/biomedicines12051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases.
Collapse
Affiliation(s)
- Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Anna A. Abramova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Anastasia N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Daria D. Eliseeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| |
Collapse
|
3
|
Agafonova LE, Zhdanov DD, Gladilina YA, Shishparenok AN, Shumyantseva VV. Electrochemical approach for the analysis of DNA degradation in native DNA and apoptotic cells. Heliyon 2024; 10:e25602. [PMID: 38371963 PMCID: PMC10873663 DOI: 10.1016/j.heliyon.2024.e25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
The aim of this work was to develop an electrochemical approach for the analysis of DNA degradation and fragmentation in apoptotic cells. DNA damage is considered one of the major causes of human diseases. We analyzed the cleavage processes of the circular plasmid pTagGFP2-N and calf thymus DNA, which were exposed to restriction endonucleases (the restriction endonucleases BstMC I and AluB I and the nonspecific endonuclease I). Genomic DNA from the leukemia K562 cell line was used as a marker of the early and late (mature) stages of apoptosis. Registration of direct electrochemical oxidation of nucleobases of DNA molecules subjected to restriction endonuclease or apoptosis processes was proposed for the detection of these biochemical events. Label-free differential pulse voltammetry (DPV) has been used to measure endonuclease activities and DNA damage using carbon nanotube-modified electrodes. The present DPV technique provides a promising platform for high-throughput screening of DNA hydrolases and for registering the efficiency of apoptotic processes. DPV comparative analysis of the circular plasmid pTagGFP2-N in its native supercoiled state and plasmids restricted to 4 and 23 parts revealed significant differences in their electrochemical behavior. Electrochemical analysis was fully confirmed by means of traditional methods of DNA analysis and registration of apoptotic process, such as gel electrophoresis and flow cytometry.
Collapse
Affiliation(s)
- Lyubov E. Agafonova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121, Moscow, Russia
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121, Moscow, Russia
- Department of Biochemistry, Рeoples’ Friendship University of Russia Named After Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198, Moscow, Russia
| | - Yulia A. Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121, Moscow, Russia
| | | | - Victoria V. Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121, Moscow, Russia
- Department of Biochemistry, Pirogov Russian National Research Medical University, Ostrovitianova St. 1, 117997, Moscow, Russia
| |
Collapse
|
4
|
Blinova VG, Gladilina YA, Abramova AA, Eliseeva DD, Vtorushina VV, Shishparenok AN, Zhdanov DD. Modulation of Suppressive Activity and Proliferation of Human Regulatory T Cells by Splice-Switching Oligonucleotides Targeting FoxP3 Pre-mRNA. Cells 2023; 13:77. [PMID: 38201281 PMCID: PMC10777989 DOI: 10.3390/cells13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated variants with deletions of each of exons 2 (∆2 variant) or 7 (∆7 variant) or a deletion of both exons (∆2∆7 variant). Their involvement in the biology of Tregs as well as their association with autoimmune diseases remains to be clarified. The aim of this work was to induce a single FoxP3 splice variant in human Tregs by splice switching oligonucleotides and to monitor their phenotype and proliferative and suppressive activity. We demonstrated that Tregs from peripheral blood from patients with multiple sclerosis preferentially expressed truncated splice variants, while the FL variant was the major variant in healthy donors. Tregs with induced expression of truncated FoxP3 splice variants demonstrated lower suppressive activity than those expressing FL variants. Reduced suppression was associated with the decreased expression of Treg-associated suppressive surface molecules and the production of cytokines. The deletion of exons 2 and/or 7 also reduced the cell proliferation rate. The results of this study show an association between FoxP3 splice variants and Treg function and proliferation. The modulation of Treg suppressive activity by the induction of the FoxP3 FL variant can become a promising strategy for regenerative immunotherapy.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
| | - Anna A. Abramova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Daria D. Eliseeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Valentina V. Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, Laboratory of Clinical Immunology, Academician Oparin st. 4, 117997 Moscow, Russia;
| | - Anastasia N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
5
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Agafonova L, Zhdanov D, Gladilina Y, Kanashenko S, Shumyantseva V. A pilot study on an electrochemical approach for assessing transient DNA transfection in eukaryotic cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|