1
|
Chen KY, Liu Z, Yi J, Hui YP, Song YN, Lu JH, Chen HJ, Yang SY, Hu XY, Zhang DS, Liang GY. PDHA1 Alleviates Myocardial Ischemia-Reperfusion Injury by Improving Myocardial Insulin Resistance During Cardiopulmonary Bypass Surgery in Rats. Cardiovasc Drugs Ther 2025; 39:17-31. [PMID: 37610688 DOI: 10.1007/s10557-023-07501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.
Collapse
Affiliation(s)
- Kai-Yuan Chen
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Zhou Liu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Jing Yi
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou Province, China
| | - Yong-Peng Hui
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Ying-Nan Song
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Jun-Hou Lu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Hong-Jin Chen
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Si-Yuan Yang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Xuan-Yi Hu
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Deng-Shen Zhang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563009, Guizhou Province, China
| | - Gui-You Liang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Li Y, Zhang Y, Cao R, Niu J, Bian T, Ma D, Wang Z, Wang M, Yan X. Identifications of metabolic differences between Hedysari Radix Praeparata Cum Melle and Astragali Radix Praeparata Cum Melle for spleen-qi deficiency rats: A comparative study. J Pharm Biomed Anal 2023; 236:115689. [PMID: 37677887 DOI: 10.1016/j.jpba.2023.115689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Hedysari Radix Praeparata Cum Melle (HRPCM) and Astragali Radix Praeparata Cum Melle (ARPCM) are capable of improving spleen-qi deficiency (SQD) syndrome especially in the gastrointestinal dysfunction and decreased immunity in traditional Chinese medicine clinically. This study aims to compare and reveal the metabolic differences between HRPCM and ARPCM for SQD rats. Firstly, HRPCM (12.6 g/kg) and ARPCM (12.6 g/kg) were used to intervene SQD rats to further evaluate the effect. The results showed that HRPCM and ARPCM were able to improve the spleen pathology, increase the body weight, the rectal temperature, the spleen index, the thymus index, the levels of GAS and D-xylose in serum, and decrease the levels of IL-2, IL-6 and TNF-α in serum for SQD rats. Then, the studies of metabolic differences in serum and spleen were carried out using UPLC-Q-TOF-MS. The findings emphasized that HRPCM and ARPCM not only regulated metabolic profiling of serum and spleen in SQD rats, but also existed differences. HRPCM and ARPCM regulated metabolic pathways mainly including lipid metabolism, energy metabolism, amino acid metabolism, nucleotide metabolism, sugar metabolism and other types of metabolism for SQD rats. However, the metabolite profiles in SQD rats changed significantly, mainly involving abnormal glycine synthesis occurred in SQD rats. The expression trends of metabolites in HRPCM and ARPCM intervention for SQD rats were partly the same. Interestingly, there are similarities and differences in metabolic profiling between HRPCM and ARPCM for SQD rats. The differences were mainly in the synthesis of L-glutamine in amino acid metabolism.
Collapse
Affiliation(s)
- Yuefeng Li
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China; Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yugui Zhang
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Rui Cao
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Jiangtao Niu
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Tiantian Bian
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Dingcai Ma
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Zhe Wang
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Maomao Wang
- Pharmacy of College, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Quality and Standard of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, China
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
5
|
Madeira CA, Anselmo C, Costa JM, Bonito CA, Ferreira RJ, Santos DJVA, Wanders RJ, Vicente JB, Ventura FV, Leandro P. Functional and structural impact of 10 ACADM missense mutations on human medium chain acyl-Coa dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166766. [PMID: 37257730 DOI: 10.1016/j.bbadis.2023.166766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated. Herein, the commonest MCAD variant (p.K304E) and 11 additional rare variants (p.Y48C, p.R55G, p.A88P, p.Y133C, p.A140T, p.D143V, p.G224R, p.L238F, p.V264I, p.Y372N, and p.G377V) were functionally and structurally characterized. Half of the studied variants presented a FAD content <65 % compared to the wild-type. Most of them were recovered as tetramers, except the p.Y372N (mainly as dimers). No correlation was found between the levels of tetramers and FAD content. However, a correlation between FAD content and the cofactor's affinity, proteolytic stability, thermostability, and thermal inactivation was established. We showed that the studied amino acid changes in MCAD may alter the substrate chain-length dependence and the interaction with electron-transferring-flavoprotein (ETF) necessary for a proper functioning electron transfer thus adding additional layers of complexity to the pathological effect of ACADM missense mutations. Although the majority of the variant MCADs presented an impaired capacity to retain FAD during their synthesis, some of them were structurally rescued by cofactor supplementation, suggesting that in the mitochondrial environment the levels and activity of those variants may be dependent of FAD's availability thus contributing for the heterogeneity of the MCADD phenotype found in patients presenting the same genotype.
Collapse
Affiliation(s)
- Catarina A Madeira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carolina Anselmo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia A Bonito
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Daniel J V A Santos
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Ronald J Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers-University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Fátima V Ventura
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
6
|
Pan SS, Wang F, Hui YP, Chen KY, Zhou L, Gao WL, Wu HK, Zhang DS, Yang SY, Hu XY, Liang GY. Insulin reduces pyroptosis-induced inflammation by PDHA1 dephosphorylation-mediated NLRP3 activation during myocardial ischemia-reperfusion injury. Perfusion 2023; 38:1277-1287. [PMID: 35506656 DOI: 10.1177/02676591221099807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies proved that pyrin domain-containing protein 3 (NLRP3)-induced pyroptosis plays an important role in Myocardial ischemia-reperfusion injury (MIRI). Insulin can inhibit the activation of NLRP3 inflammasome, although the exact mechanism remains unclear. The aim of this study was to determine whether insulin reduces NLRP3-induced pyroptosis by regulating pyruvate dehydrogenase E1alpha subunit (PDHA1) dephosphorylation during MIRI. METHODS Rat hearts were subject to 30 min global ischemia followed by 60 min reperfusion, with or without 0.5 IU/L insulin. Myocardial ischemia-reperfusion injury was evaluated by measuring myocardial enzymes release, Cardiac hemodynamics, pathological changes, infarct size, and apoptosis rate. Cardiac aerobic glycolysis was evaluated by measuring ATP, lactic acid content, and pyruvate dehydrogenase complex (PDHc) activity in myocardial tissue. Recombinant adenoviral vectors for PDHA1 knockdown were constructed. Pyroptosis-related proteins were measured by Western blotting analysis, immunohistochemistry staining, and ELISA assay, respectively. RESULTS It was found that insulin significantly reduced the area of myocardial infarction, apoptosis rate, and improved cardiac hemodynamics, pathological changes, energy metabolism. Insulin inhibits pyroptosis-induced inflammation during MIRI. Subsequently, Adeno-associated virus was used to knock down cardiac PDHA1 expression. Knockdown PDHA1 not only promoted the expression of NLRP3 but also blocked the inhibitory effect of insulin on NLRP3-mediated pyroptosis in MIRI. CONCLUSIONS Results suggest that insulin protects against MIRI by regulating PDHA1 dephosphorylation, its mechanism is not only to improve myocardial energy metabolism but also to reduce the NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Si-Si Pan
- Cardiovascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Feng Wang
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Yong-Peng Hui
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Kai-Yuan Chen
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Liu Zhou
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Wei-Long Gao
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Hong-Kun Wu
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| | - Deng-Sheng Zhang
- Cardiovascular Surgery, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Si-Yuang Yang
- Cardiovascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xuan-Yi Hu
- Cardiovascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Gui-You Liang
- Cardiovascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Translational Medicine Research Center, Guizhou Medical University, Guizhou, China
| |
Collapse
|
7
|
Tanner LM, Tynninen O, Piippo K, Puhakka AM. X-linked pyruvate dehydrogenase complex deficiency due to a novel PDHA1 variant associated with structural brain abnormalities in a fetus. Prenat Diagn 2023; 43:730-733. [PMID: 37160702 DOI: 10.1002/pd.6349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/11/2023]
Abstract
We report a case of pyruvate dehydrogenase E1 alpha subunit deficiency associated with a novel hemizygous PDHA1 variant presenting prenatally as multiple structural brain abnormalities in a male fetus. A healthy Finnish couple was initially referred to the Fetomaternal Medical Center because of suspected fetal choroid plexus cyst at 11 + 2 weeks of pregnancy. At 20 + 0 weeks, multiple abnormalities were observed with ultrasound including narrow thorax, slightly enlarged heart, hypoplastic cerebellum, absent cerebellar vermis and ventriculomegaly. Autopsy and genetic analyses were performed after the termination of pregnancy. The findings of macroscopic examination included cleft palate, abnormally overlapping position of fingers and toes and dysmorphic facial features. Neuropathological examination confirmed the absence of corpus callosum, cerebellar hypoplasia and ventriculomegaly. Nodular neuronal heterotopia was also observed. Trio exome sequencing revealed a novel hemizygous de novo variant c.1144C>T p.(Gln382*) in the PDHA1 gene, classified as likely pathogenic. We suggest that inherited metabolic disorders should be kept in mind as differential diagnoses in fetuses with structural brain abnormalities.
Collapse
Affiliation(s)
- Laura M Tanner
- Division of Genetics and Clinical Pharmacology, Department of Clinical Genetics, HUS Diagnostic Center, Helsinki, Finland
- Fetomaternal Medical Center, Helsinki University Hospital, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kirsi Piippo
- Division of Genetics and Clinical Pharmacology, Laboratory of Genetics, HUS Diagnostic Center, Helsinki, Finland
| | - Antti M Puhakka
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Ducich NH, Mears JA, Bedoyan JK. Solvent accessibility of E1α and E1β residues with known missense mutations causing pyruvate dehydrogenase complex (PDC) deficiency: Impact on PDC-E1 structure and function. J Inherit Metab Dis 2022; 45:557-570. [PMID: 35038180 PMCID: PMC9297371 DOI: 10.1002/jimd.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αβ/α'β') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1β nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1β, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.
Collapse
Affiliation(s)
- Nicole H. Ducich
- Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Jason A. Mears
- Department of Pharmacology, CWRU, Cleveland, Ohio, USA
- Center for Mitochondrial Diseases, CWRU, Cleveland, Ohio, USA
| | - Jirair K. Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Chen W, Sun X, Zhan L, Zhou W, Bi T. Conditional Knockout of Pdha1 in Mouse Hippocampus Impairs Cognitive Function: The Possible Involvement of Lactate. Front Neurosci 2021; 15:767560. [PMID: 34720870 PMCID: PMC8552971 DOI: 10.3389/fnins.2021.767560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose: Neurodegenerative diseases are associated with metabolic disturbances. Pyruvate dehydrogenase E1 component subunit alpha (PDHA1) is an essential component in the process of glucose metabolism, and its deficiency exists in various diseases such as Alzheimer’s disease (AD), epilepsy, Leigh’s syndrome, and diabetes-associated cognitive decline. However, the exact role of PDHA1 deficiency in neurodegenerative diseases remains to be elucidated. In this study, we explored the effect of PDHA1 deficiency on cognitive function and its molecular mechanism. Methods: A hippocampus-specific Pdha1 knockout (Pdha1–/–) mouse model was established, and behavioral tests were used to evaluate the cognitive function of mice. Transmission electron microscopy (TEM) was performed to observe the morphological changes of the hippocampus. The lactate level in the hippocampus was measured. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to explore the possible mechanism of the effect of PDHA1 on cognition. Results:Pdha1 knockout damaged the spatial memory of mice and led to the ultrastructural disorder of hippocampal neurons. Lactate accumulation and abnormal lactate transport occurred in Pdha1–/– mice, and the cyclic AMP-protein kinase A-cAMP response element-binding protein (cAMP/PKA/CREB) pathway was inhibited. Conclusion: Lactate accumulation caused by PDHA1 deficiency in the hippocampus may impair cognitive function by inhibiting the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Wanxin Chen
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxia Sun
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Centre for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen Zhou
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Bi
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Yue WW. Structural biochemistry coming of age in the study of genetic metabolic disorders. Biochimie 2021; 183:1-2. [PMID: 33636250 DOI: 10.1016/j.biochi.2021.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
12
|
Pavlu-Pereira H, Silva MJ, Florindo C, Sequeira S, Ferreira AC, Duarte S, Rodrigues AL, Janeiro P, Oliveira A, Gomes D, Bandeira A, Martins E, Gomes R, Soares S, Tavares de Almeida I, Vicente JB, Rivera I. Pyruvate dehydrogenase complex deficiency: updating the clinical, metabolic and mutational landscapes in a cohort of Portuguese patients. Orphanet J Rare Dis 2020; 15:298. [PMID: 33092611 PMCID: PMC7579914 DOI: 10.1186/s13023-020-01586-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA. PDC deficiency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly affects the central nervous system. The aim of this study is to describe and discuss the clinical, biochemical and genotypic information from thirteen PDC deficient patients, thus seeking to establish possible genotype-phenotype correlations. RESULTS The mutational spectrum showed that seven patients carry mutations in the PDHA1 gene encoding the E1α subunit, five patients carry mutations in the PDHX gene encoding the E3 binding protein, and the remaining patient carries mutations in the DLD gene encoding the E3 subunit. These data corroborate earlier reports describing PDHA1 mutations as the predominant cause of PDC deficiency but also reveal a notable prevalence of PDHX mutations among Portuguese patients, most of them carrying what seems to be a private mutation (p.R284X). The biochemical analyses revealed high lactate and pyruvate plasma levels whereas the lactate/pyruvate ratio was below 16; enzymatic activities, when compared to control values, indicated to be independent from the genotype and ranged from 8.5% to 30%, the latter being considered a cut-off value for primary PDC deficiency. Concerning the clinical features, all patients displayed psychomotor retardation/developmental delay, the severity of which seems to correlate with the type and localization of the mutation carried by the patient. The therapeutic options essentially include the administration of a ketogenic diet and supplementation with thiamine, although arginine aspartate intake revealed to be beneficial in some patients. Moreover, in silico analysis of the missense mutations present in this PDC deficient population allowed to envisage the molecular mechanism underlying these pathogenic variants. CONCLUSION The identification of the disease-causing mutations, together with the functional and structural characterization of the mutant protein variants, allow to obtain an insight on the severity of the clinical phenotype and the selection of the most appropriate therapy.
Collapse
Affiliation(s)
- Hana Pavlu-Pereira
- Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria João Silva
- Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Florindo
- Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sílvia Sequeira
- Department of Pediatrics, Hospital D. Estefânia, Lisbon, Portugal
| | | | - Sofia Duarte
- Department of Pediatrics, Hospital D. Estefânia, Lisbon, Portugal
| | | | - Patrícia Janeiro
- Department of Pediatrics, Hospital Santa Maria, Lisbon, Portugal
| | | | - Daniel Gomes
- Department of Medicine, Hospital Santa Maria, Lisbon, Portugal
| | - Anabela Bandeira
- Department of Pediatrics, Hospital Santo António, Porto, Portugal
| | | | - Roseli Gomes
- Department of Neuropediatrics, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Sérgia Soares
- Department of Neuropediatrics, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Isabel Tavares de Almeida
- Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Av. da República (Estação Agronómica Nacional), 2780-157, Oeiras, Portugal.
| | - Isabel Rivera
- Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|