1
|
da Silva IV, Lopes PA, Fonseca E, Vigia E, Paulino J, Soveral G. The Association of Aquaporins with MAPK Signaling Pathway Unveils Potential Prognostic Biomarkers for Pancreatic Cancer: A Transcriptomics Approach. Biomolecules 2025; 15:488. [PMID: 40305202 PMCID: PMC12024632 DOI: 10.3390/biom15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Pancreatic cancer is one of the most lethal and challenging malignancies. Its severity is primarily linked to the constitutively activated mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Aquaporins (AQPs) are frequently overexpressed in pancreatic cancer, playing crucial roles in cell signaling, and consequently promoting cell migration, proliferation, and invasion. Here, we investigate the transcriptomics of key players in epithelial-mesenchymal transition (EMT) and the MAPK/ERK signaling pathway in pancreatic cancer tissues, correlating them with tumor AQP expression to highlight their potential as diagnostic or prognostic tools. The transcriptomics analysis was conducted in 24 paired pancreatic tumors and adjacent healthy tissues, and analyses were performed considering the patients' age and gender, as well as tumor invasiveness and aggressiveness. Our results revealed strong positive Pearson correlation coefficients between AQP3 and c-Jun, and between AQP5 and CDH1/EGFR in pancreatic tumors but not in healthy tissues, with posterior in vitro confirmation in pancreatic cancer BxPC3 cells, suggesting a shift in the regulatory mechanisms of gene expression that certainly affect the physiology of the tissue, influencing cancer initiation and progression. This study underscores the interplay between AQPs and cancer signaling pathways, opening new avenues for defining novel clinical biomarkers and improving the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Paula A. Lopes
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Elisabete Fonseca
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Emanuel Vigia
- Hepatobiliopancreatic and Transplantation Center, Hospital de Curry Cabral (CHULC), 1050-099 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Jorge Paulino
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Hospital da Luz, 1500-650 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Choi HS, Jang HJ, Kristensen MK, Kwon TH. TAZ is involved in breast cancer cell migration via regulating actin dynamics. Front Oncol 2024; 14:1376831. [PMID: 38774409 PMCID: PMC11106448 DOI: 10.3389/fonc.2024.1376831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Background Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZ-binding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB-231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-β treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.
Collapse
Affiliation(s)
- Hong Seok Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Mathilde K. Kristensen
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- Faculty of Health, Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| |
Collapse
|
4
|
Shangzu Z, Dingxiong X, ChengJun M, Yan C, Yangyang L, Zhiwei L, Ting Z, Zhiming M, Yiming Z, Liying Z, Yongqi L. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 2022; 183:106363. [PMID: 35905892 DOI: 10.1016/j.phrs.2022.106363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Xie Dingxiong
- Gansu Institute of Cardiovascular Diseases, LanZhou,China
| | - Ma ChengJun
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Liu Zhiwei
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhou Ting
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Yiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of traditional Chinese Medicine, LanZhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou,China.
| | - Liu Yongqi
- Gansu University of traditional Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
5
|
Centrone M, D’Agostino M, Ranieri M, Mola MG, Faviana P, Lippolis PV, Silvestris DA, Venneri M, Di Mise A, Valenti G, Tamma G. dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells. Front Cell Dev Biol 2022; 10:919438. [PMID: 35874817 PMCID: PMC9304624 DOI: 10.3389/fcell.2022.919438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D’Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, Pisa, Italy
| | | | | | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Grazia Tamma,
| |
Collapse
|
6
|
Ionescu S, Nicolescu AC, Marincas M, Madge OL, Simion L. An Update on the General Features of Breast Cancer in Male Patients-A Literature Review. Diagnostics (Basel) 2022; 12:1554. [PMID: 35885460 PMCID: PMC9323942 DOI: 10.3390/diagnostics12071554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Male breast cancers are uncommon, as men account for less than 1 percent of all breast carcinomas. Among the predisposing risk factors for male breast cancer, the following appear to be significant: (a) breast/chest radiation exposure, (b) estrogen use, diseases associated with hyper-estrogenism, such as cirrhosis or Klinefelter syndrome, and (c) family health history. Furthermore, there are clear familial tendencies, with a higher incidence among men who have a large number of female relatives with breast cancer and (d) major inheritance susceptibility. Moreover, in families with BRCA mutations, there is an increased risk of male breast cancer, although the risk appears to be greater with inherited BRCA2 mutations than with inherited BRCA1 mutations. Due to diagnostic delays, male breast cancer is more likely to present at an advanced stage. A core biopsy or a fine needle aspiration must be performed to confirm suspicious findings. Infiltrating ductal cancer is the most prevalent form of male breast cancer, while invasive lobular carcinoma is extremely uncommon. Male breast cancer is almost always positive for hormone receptors. A worse prognosis is associated with a more advanced stage at diagnosis for men with breast cancer. Randomized controlled trials which recruit both female and male patients should be developed in order to gain more consistent data on the optimal clinical approach.
Collapse
Affiliation(s)
- Sinziana Ionescu
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Marian Marincas
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavia-Luciana Madge
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Faculty of Letters, University of Bucharest, 050663 Bucharest, Romania
| | - Laurentiu Simion
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Pharmacokinetics of Veratramine and Jervine from Alcohol Extracts of Radix Veratri. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8289548. [PMID: 35785141 PMCID: PMC9246587 DOI: 10.1155/2022/8289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Background Chinese Materia Medica and Jiangsu New Medical College record that Radix Veratri root is Liliaceae Veratrum taliense Loses. f. and the root of Veratrum stenophyllum Diels. According to traditional Chinese medicine (TCM) example, Radix Veratri is a Liliaceae plant Veratrum taliense. Another literature pointed out that the aliases of Veratrum taliense and Veratrum angustifolia are both Radix Veratri, and their effects are basically the same. The main active ingredient of Veratrum is veratramine, of which veratramine and Jervine are higher in content, reaching 24.60% and 21.28% of the total alkaloids, respectively. Veratrum alkaloids are both toxic and effective ingredients. In addition to its good clinical efficacy, attention should also be paid to its pharmacokinetic characteristics in vivo. It is particularly important to study the pharmacokinetic characteristics of veratramine and Jervine in vivo. Objective The goal of this study was to develop a simple and effective method for measuring veratramine and Jervine in rat plasma at the same time. This method was used to study the pharmacokinetic characteristics of veratramine and Jervine in the alcohol extract of Radix Veratri in rats, to provide a reasonable basis for the clinical use of Radix Veratri. Methods Eighteen SD rats were randomly assigned into three groups, half male and half female, and were given 0.04 g/kg, 0.08g/kg, and 0.16 g/kg Radix Veratri alcohol extract, respectively. Blood samples were collected at different time points and were analyzed by LC-MS/MS after protein precipitation. Bullatine was set as the internal standard; the plasma samples were extracted with ethyl acetate. After the sample was processed, acetonitrile-10 mM ammonium acetate, whose pH was adjusted to 8.8 with ammonia water, was taken as the mobile phase. Veratramine quantitative ion pair was 410.1⟶295.1m/z, Jervine quantitative ion pair was 426.2⟶114.1m/z, and Bullatine B (IS) quantitative ion pair was 438.2⟶420.1m/z. In the positive ion mode, the multireaction monitoring (MRM) mode was used to determine the blood concentration of veratramine and Jervine. DAS 3.3.0 was used to calculate the relevant pharmacokinetic parameters. Results Veratramine had a good linear relationship in the concentration range of 0.0745~18.2 ng/mL, and that of Jervine was 1.11~108 ng/mL. The correlation coefficient r of three consecutive batches of the standard curve was greater than 0.995. Veratramine's lower quantification limit was 0.745 ng/mL, Jervine's was 1.11 ng/mL, and precision and accuracy were both less than 15%. The accuracy of veratramine was between 88.96% and 101.85%, and the accuracy of Jervine was between 92.96% and 104.50%. This method was adopted for the pharmacokinetic study of alcohol extracts of Radix Veratri. The results showed that only Cmax of veratramine female rats did not show linear kinetic characteristics in the dose range of Radix Veratri alcohol extract from 0.04 g/kg to 0.16 g/kg. For AUC0‐t and Cmax of veratramine and Jervine, it could not determine whether the Radix Veratri alcohol extract showed linear kinetic characteristics within the dosage range of 0.04 g/kg~0.16 g/kg. Veratramine and Jervine showed obvious gender differences in the absorption and elimination stages. The absorption rate of veratramine and Jervine by male mice was about 10 times higher than that of female mice, and the elimination rate of male mice is about 20 times lower than that of female mice. It was suggested that the clinical application of the steroidal alkaloids veratramine and Jervine in Radix Veratri required rational use of drugs based on gender. Conclusion An LC-MS/MS analysis method suitable for the pharmacokinetic study of veratramine and Jervine in Radix Veratri in SD rats was established to provide a basis for in vivo pharmacokinetic studies. The pharmacokinetic characteristics of veratramine and Jervine in the alcohol extract of Radix Veratri were significantly different in female and male rats. During the clinical use of Radix Veratri, it should pay close attention to the obvious gender differences that may occur after the medication.
Collapse
|
8
|
Zieger E, Schwaha T, Burger K, Bergheim I, Wanninger A, Calcino AD. Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Front Cell Dev Biol 2022; 10:894434. [PMID: 35774230 PMCID: PMC9237387 DOI: 10.3389/fcell.2022.894434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Intercellular lumen formation is a crucial aspect of animal development and physiology that involves a complex interplay between the molecular and physical properties of the constituent cells. Embryos of the invasive freshwater mussel Dreissena rostriformis are ideal models for studying this process due to the large intercellular cavities that readily form during blastomere cleavage. Using this system, we show that recruitment of the transmembrane water channel protein aquaporin exclusively to the midbody of intercellular cytokinetic bridges is critical for lumenogenesis. The positioning of aquaporin-positive midbodies thereby influences the direction of cleavage cavity expansion. Notably, disrupting cytokinetic bridge microtubules impairs not only lumenogenesis but also cellular osmoregulation. Our findings reveal a simple mechanism that provides tight spatial and temporal control over the formation of luminal structures and likely plays an important role in water homeostasis during early cleavage stages of a freshwater invertebrate species.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Thomas Schwaha
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Katharina Burger
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Andrew D. Calcino
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| |
Collapse
|
9
|
Bystrup M, Login FH, Edamana S, Borgquist S, Tramm T, Kwon TH, Nejsum LN. Aquaporin-5 in breast cancer. APMIS 2022; 130:253-260. [PMID: 35114014 PMCID: PMC9314690 DOI: 10.1111/apm.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The water channel aquaporin‐5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation. AQP5 has also been shown to be involved in the dysregulation of epithelial cell–cell adhesion; frequently observed in cancers. Insight into the underlying molecular mechanisms of how AQP5 contributes to cancer development and progression is essential for potentially implementing AQP5 as a prognostic biomarker and to develop targeted intervention strategies for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Malte Bystrup
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
10
|
Bruun-Sørensen AS, Edamana S, Login FH, Borgquist S, Nejsum LN. Aquaporins in pancreatic ductal adenocarcinoma. APMIS 2021; 129:700-705. [PMID: 34582595 DOI: 10.1111/apm.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Aquaporins are water channel proteins facilitating passive transport of water across cellular membranes. Aquaporins are over- or ectopically expressed in a multitude of cancers, including pancreatic ductal adenocarcinoma, which is a highly aggressive cancer with low survival rate. Evidence suggests that aquaporins can affect multiple cellular processes involved in cancer development and progression including epithelial-mesenchymal transition, cellular migration, cell proliferation, invasion, and cellular adhesions. In pancreatic ductal adenocarcinoma, aquaporin-1, aquaporin-3, and aquaporin-5 are overexpressed and have been associated with metastatic processes and poor survival. Thus, aquaporin expression has been suggested as diagnostic markers and therapeutic targets in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Anne Sofie Bruun-Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|