1
|
Koroleva ON, Kuzmina NV, Tolstova AP, Dubrovin EV, Drutsa VL. Effect of C- and N-Terminal Polyhistidine Tags on Aggregation of Influenza A Virus Nuclear Export Protein. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2238-2251. [PMID: 39865036 DOI: 10.1134/s0006297924120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His6-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc. His6-tag attached to the C-terminus has the greatest effect on aggregation kinetics and morphology of nanoparticles, which indicates important role of the C-terminal domain in the process of protein self-assembly. Molecular dynamics simulation did not reveal substantial influence of the His6-containing fragments on the protein structure, but demonstrated some variations in the mobility of these fragments that may explain the observed differences in the aggregation kinetics of the different NEP variants. Hypothetical mechanisms for formation and interconversion of various aggregates are considered.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalya V Kuzmina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna P Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Evgeniy V Dubrovin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- National University of Science and Technology MISIS, Moscow, 119049, Russia
| | - Valerii L Drutsa
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Zabrodskaya Y, Tsvetkov V, Shurygina AP, Vasyliev K, Shaldzhyan A, Gorshkov A, Kuklin A, Fedorova N, Egorov V. How the immune mousetrap works: Structural evidence for the immunomodulatory action of a peptide from influenza NS1 protein. Biophys Chem 2024; 307:107176. [PMID: 38219420 DOI: 10.1016/j.bpc.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
One of the critical stages of the T-cell immune response is the dimerization of the intramembrane domains of T-cell receptors (TCR). Structural similarities between the immunosuppressive domains of viral proteins and the transmembrane domains of TCR have led several authors to hypothesize the mechanism of immune response suppression by highly pathogenic viruses: viral proteins embed themselves in the membrane and act on the intramembrane domain of the TCRalpha subunit, hindering its functional oligomerization. It has also been suggested that this mechanism is used by influenza A virus in NS1-mediated immunosuppression. We have shown that the peptide corresponding to the primary structure of the potential immunosuppressive domain of NS1 protein (G51) can reduce concanavalin A-induced proliferation of PBMC cells, as well as in vitro, G51 can affect the oligomerization of the core peptide corresponding to the intramembrane domain of TCR, using AFM and small-angle neutron scattering. The results obtained using in cellulo and in vitro model systems suggest the presence of functional interaction between the NS1 fragment and the intramembrane domain of the TCR alpha subunit. We have proposed a possible scheme for such interaction obtained by computer modeling. This suggests the existence of another NS1-mediated mechanism of immunosuppression in influenza.
Collapse
Affiliation(s)
- Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia.
| | - Vladimir Tsvetkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Federal Research and Clinical Center for Physical Chemical Medicine, 1a Ulitsa Malaya Pirogovskaya, Moscow 119435, Russia; Center for Mathematical Modeling in Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Kirill Vasyliev
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Aram Shaldzhyan
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Andrey Gorshkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Alexander Kuklin
- International Intergovernmental Organization Joint Institute for Nuclear Research, 6 Ulitsa Joliot-Curie, Dubna 141980, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy pereulok, 141701 Dolgoprudny, Moscow Region, Russia
| | - Natalya Fedorova
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova Roshcha, Gatchina 188300, Russia
| | - Vladimir Egorov
- Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia
| |
Collapse
|
3
|
Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, Burdakov V, Ramsay E, Purvinsh L, Egorova M, Vysochinskaya V, Baranovskaya I, Brodskaya A, Povalikhin R, Vasin A. Exosomes Released by Influenza-Virus-Infected Cells Carry Factors Capable of Suppressing Immune Defense Genes in Naïve Cells. Viruses 2022; 14:2690. [PMID: 36560694 PMCID: PMC9781497 DOI: 10.3390/v14122690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles. Thus, the aim of our work was to study changes in exosomal composition following IAV infection of cells, as well as to evaluate their effect on uninfected cells. Methods: To characterize changes in the composition of cellular miRNAs and mRNAs of exosomes during IAV infection of A549 cells, NGS was used, as well as PCR to identify viral genes. Naïve A549 cells were stimulated with infected-cell-secreted exosomes for studying their activity. Changes in the expression of genes associated with the cell's immune response were shown using PCR. The effect of exosomes on IAV replication was shown in MDCK cells using In-Cell ELISA and PCR of the supernatants. Results: A change in the miRNA composition (miR-21-3p, miR-26a-5p, miR-23a-5p, miR-548c-5p) and mRNA composition (RPL13A, MKNK2, TRIB3) of exosomes under the influence of the IAV was shown. Many RNAs were involved in the regulation of the immune response of the cell, mainly by suppressing it. After exosome stimulation of naïve cells, a significant decrease in the expression of genes involved in the immune response was shown (RIG1, IFIT1, MDA5, COX2, NFκB, AnxA1, PKR, IL6, IL18). When infecting MDCK cells, a significant decrease in nucleoprotein levels was observed in the presence of exosomes secreted by mock-infected cells. Viral levels in supernatants also decreased. Conclusions: Exosomes secreted by IAV-infected cells could reduce the immune response of neighboring intact cells, leading to more effective IAV replication. This may be associated both with regulatory functions of cellular miRNAs and mRNAs carried by exosomes, or with the presence of viral mRNAs encoding proteins with an immunosuppressive function.
Collapse
Affiliation(s)
- Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Marina Plotnikova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Nina Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Alexey Lozhkov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Sergey Klotchenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova roshcha, 188300 Gatchina, Russia
| | - Edward Ramsay
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| | - Lada Purvinsh
- Biology Science Department, The University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Marja Egorova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Vera Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Irina Baranovskaya
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, CA-3149, Augusta, GA 30912, USA
| | - Alexandra Brodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Roman Povalikhin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| |
Collapse
|
4
|
Shaldzhyan A, Zabrodskaya Y, Yolshin N, Kudling T, Lozhkov A, Plotnikova M, Ramsay E, Taraskin A, Nekrasov P, Grudinin M, Vasin A. Clean and folded: Production of active, high quality recombinant human interferon-λ1. Process Biochem 2021; 111:32-39. [PMID: 34493923 PMCID: PMC8411590 DOI: 10.1016/j.procbio.2021.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/09/2022]
Abstract
Type III interferons exhibit antiviral activity against influenza viruses, coronaviruses, rotaviruses, and others. In addition, this type of interferon theoretically has therapeutic advantages, in comparison with type I interferons, due to its ability to activate a narrower group of genes in a relatively small group of target cells. Hence, it can elicit more targeted antiviral or immunomodulatory responses. Obtaining biologically-active interferon lambda (hIFN-λ1) is fraught with difficulties at the stage of expression in soluble form or, in the case of expression in the form of inclusion bodies, at the stage of refolding. In this work, hIFN-λ1 was expressed in the form of inclusion bodies, and a simple, effective refolding method was developed. Efficient and scalable methods for chromatographic purification of recombinant hIFN-λ1 were also developed. High-yield, high-purity product was obtained through optimization of several processes including: recombinant protein expression; metal affinity chromatography; cation exchange chromatography; and an intermediate protein refolding stage. The obtained protein was shown to feature expected specific biological activity in line with published effects: induction of MxA gene expression in A549 cells and antiviral activity against influenza A virus.
Collapse
Affiliation(s)
- Aram Shaldzhyan
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia.,Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 194064, Russia.,Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute", mkr. Orlova roshcha 1, Gatchina, 188300, Russia
| | - Nikita Yolshin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia
| | - Tatiana Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Alexey Lozhkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia.,Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 194064, Russia
| | - Marina Plotnikova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia
| | - Edward Ramsay
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia
| | - Aleksandr Taraskin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia.,Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 194064, Russia
| | - Peter Nekrasov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia
| | - Mikhail Grudinin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia
| | - Andrey Vasin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Prof. Popov St., St. Petersburg, 197376, Russia.,Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 194064, Russia
| |
Collapse
|