1
|
Zeng F, Zhang Y, Luo T, Wang C, Fu D, Wang X. Daidzein Inhibits Non-small Cell Lung Cancer Growth by Pyroptosis. Curr Pharm Des 2025; 31:884-924. [PMID: 39623715 DOI: 10.2174/0113816128330530240918073721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 04/24/2025]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear. METHODS We developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day). Mass spectrometry analysis of tumor tissues from daidzein-treated mice identified 601 differentially expressed proteins (DEPs) compared to the vehicle-treated group. Gene enrichment analysis revealed that these DEPs were primarily associated with immune regulatory functions, including B cell receptor and chemokine pathways, as well as natural killer cell-mediated cytotoxicity. Notably, the NOD-like receptor signaling pathway, which is closely linked to pyroptosis, was significantly enriched. RESULTS Further analysis of key pyroptosis-related molecules, such as ASC, CASP1, GSDMD, and IL-1β, revealed differential expression in NSCLC versus normal tissues. High levels of ASC and CASP1 were associated with a favorable prognosis in NSCLC, suggesting that they may be critical effectors of daidzein's action. In NSCLC-bearing mice treated with daidzein, RT-qPCR and Western blot analyses showed elevated mRNA and protein levels of ASC, CASP1, and IL-1β but not GSDMD, which was consistent with the proteomic data. CONCLUSION In summary, this study demonstrated that daidzein inhibits NSCLC growth by inducing pyroptosis. Key pathway modulators ASC, CASP1, and IL-1β were identified as primary targets of daidzein. These findings offer insights into the molecular mechanisms underlying the anti-NSCLC effects of daidzein and could offer dietary recommendations for managing NSCLC.
Collapse
Affiliation(s)
- Fanfan Zeng
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ting Luo
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
- Department of Infection Control, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chengman Wang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Denggang Fu
- College of Medicine, Medical University of South Carolina, Columbia, Charleston, SC 29425, United States
| | - Xin Wang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Abo Qoura L, Balakin KV, Hoffman RM, Pokrovsky VS. The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189122. [PMID: 38796027 DOI: 10.1016/j.bbcan.2024.189122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Cancer cells are addicted to L-methionine (L-Met) and have a much greater requirement for L-Met than normal cells due to excess transmethylation, termed the Hoffman effect. By targeting this vulnerability through dietary restriction of L-Met, researchers have been able to achieve promising results in inhibiting tumor growth and eradicating cancer cells. Methioninase (EC 4.4.1.11; METase) catalyzes the transformation of L-Met into α-ketobutyrate, ammonia, and methanethiol. The use of METase was initially limited due to its poor stability in vivo, high immunogenicity, and enzyme-induced inactivating antibodies. These issues could be partially resolved by PEGylation, encapsulation in erythrocytes, and various site-directed mutagenesis. The big breakthrough came when it was discovered that METase is effectively administered orally. The enzyme L-asparaginase is approved by the FDA for treatment of acute lymphoblastic leukemia. METase has more potential as a therapeutic since addiction to L-Met is a general and fundamental hallmark of cancer.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA; Department of Surgery, University of California, San Diego, La Jolla, CA 92037-7400, USA
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia.
| |
Collapse
|
4
|
Raboni S, Faggiano S, Bettati S, Mozzarelli A. Methionine gamma lyase: Structure-activity relationships and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140991. [PMID: 38147934 DOI: 10.1016/j.bbapap.2023.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methionine gamma lyase (MGL) is a bacterial and plant enzyme that catalyzes the conversion of methionine in methanthiol, 2-oxobutanoate and ammonia. The enzyme belongs to fold type I of the pyridoxal 5'-dependent family. The catalytic mechanism and the structure of wild type MGL and variants were determined in the presence of the natural substrate as well as of many sulfur-containing derivatives. Structure-function relationship studies were pivotal for MGL exploitation in the treatment of cancer, bacterial infections, and other diseases. MGL administration to cancer cells leads to methionine starvation, thus decreasing cells viability and increasing their vulnerability towards other drugs. In antibiotic therapy, MGL acts by transforming prodrugs in powerful drugs. Numerous strategies have been pursued for the delivering of MGL in vivo to prolong its bioavailability and decrease its immunogenicity. These include conjugation with polyethylene glycol and encapsulation in synthetic or natural vesicles, eventually decorated with tumor targeting molecules, such as the natural phytoestrogens daidzein and genistein. The scientific achievements in studying MGL structure, function and perspective therapeutic applications came from the efforts of many talented scientists, among which late Tatyana Demidkina to whom we dedicate this review.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy; Department of Medicine, University of Parma, Parma, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| |
Collapse
|
5
|
Mizutani T, Hara R, Takeuchi M, Hibi M, Ueda M, Ogawa J. One-Pot Synthesis of Useful S-Substituted-l-cysteine Sulfoxides Using Genetically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5339-5347. [PMID: 38417143 DOI: 10.1021/acs.jafc.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.
Collapse
Affiliation(s)
- Taku Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryotaro Hara
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Michiki Takeuchi
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Hibi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Makoto Ueda
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Kulikova VV, Morozova EA, Koval VS, Solyev PN, Demidkina TV, Revtovich SV. Thiosulfinates: Cytotoxic and Antitumor Activity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:912-923. [PMID: 37751863 DOI: 10.1134/s0006297923070052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 09/28/2023]
Abstract
Pharmacological value of some natural compounds makes them attractive for use in oncology. The sulfur-containing thiosulfinates found in plants of the genus Allium have long been known as compounds with various therapeutic properties, including antitumor. Over the last few years, the effect of thiosulfinates on various stages of carcinogenesis has been actively investigated. In vitro and in vivo studies have shown that thiosulfinates inhibit proliferation of cancer cells, as well as they induce apoptosis. The purpose of this review is to summarize current data on the use of natural and synthetic thiosulfinates in cancer therapy. Antitumor mechanisms and molecular targets of these promising compounds are discussed. A significant part of the review is devoted to consideration of a new strategy for treatment of oncological diseases - use of the directed enzyme prodrug therapy approach aiming to obtain antitumor thiosulfinates in situ.
Collapse
Affiliation(s)
- Vitalia V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vasiliy S Koval
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
7
|
Abo Qoura L, Morozova E, Kulikova V, Karshieva S, Sokolova D, Koval V, Revtovich S, Demidkina T, Pokrovsky VS. Methionine γ-Lyase-Daidzein in Combination with S-Propyl-L-cysteine Sulfoxide as a Targeted Prodrug Enzyme System for Malignant Solid Tumor Xenografts. Int J Mol Sci 2022; 23:ijms231912048. [PMID: 36233347 PMCID: PMC9569779 DOI: 10.3390/ijms231912048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to determine the anticancer effect of dipropyl thiosulfinate produced in situ by the pharmacological pair: (1) conjugated with daidzein C115H methionine γ-lyase (EC 4.4.1.11, C115H MGL-Dz) and (2) the substrate, S-propyl-L-cysteine sulfoxide (propiin) against various solid tumor types in vitro and in vivo. The MTT test was used to calculate IC50 values for HT29, COLO205 and HCT116 (colon cancer); Panc1 and MIA-PaCa2 (pancreatic cancer); and 22Rv1, DU-145 and PC3 (prostate cancer). The most promising effect for colon cancer cells in vitro was observed in HT29 (IC50 = 6.9 µM). The IC50 values for MIA-PaCa2 and Panc1 were 3.4 and 3.8 µM, respectively. Among prostate cancer cells, 22Rv1 was the most sensitive (IC50 = 5.4 µM). In vivo antitumor activity of the pharmacological pair was studied in HT29, SW620, Panc1, MIA-PaCa2 and 22Rv1 subcutaneous xenografts in BALB/c nude mice. The application of C115H MGL-Dz /propiin demonstrated a significant reduction in the tumor volume of Panc1 (TGI 67%; p = 0.004), MIA-PaCa2 (TGI 50%; p = 0.011), HT29 (TGI 51%; p = 0.04) and 22Rv1 (TGI 70%; p = 0.043) xenografts. The results suggest that the combination of C115H MGL-Dz/propiin is able to suppress tumor growth in vitro and in vivo and the use of this pharmacological pair can be considered as a new strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (E.M.); (V.S.P.); Tel.: +7-915-143-03-91 (V.S.P.)
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Saida Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Darina Sokolova
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Vasiliy Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim S. Pokrovsky
- Department of Biochemistry, RUDN University, 117198 Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: (E.M.); (V.S.P.); Tel.: +7-915-143-03-91 (V.S.P.)
| |
Collapse
|