1
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
2
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|