1
|
Strucic M, Miklavcic D, Vidic Z, Scuderi M, Sersa I, Kranjc M. Analysis of magnetic resonance contrast agent entrapment following reversible electroporation in vitro. Radiol Oncol 2024; 58:406-415. [PMID: 39287162 PMCID: PMC11406930 DOI: 10.2478/raon-2024-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Administering gadolinium-based contrast agent before electroporation allows the contrast agent to enter the cells and enables MRI assessment of reversibly electroporated regions. The aim of this study was evaluation of contrast agent entrapment in Chinese hamster ovary (CHO) cells and comparison of these results with those determined by standard in vitro methods for assessing cell membrane permeability, cell membrane integrity and cell survival following electroporation. MATERIALS AND METHODS Cell membrane permeabilization and cell membrane integrity experiments were performed using YO-PRO-1 dye and propidium iodide, respectively. Cell survival experiments were performed by assessing metabolic activity of cells using MTS assay. The entrapment of gadolinium-based contrast agent gadobutrol inside the cells was evaluated using T1 relaxometry of cell suspensions 25 min and 24 h after electroporation and confirmed by inductively coupled plasma mass spectrometry. RESULTS Contrast agent was detected 25 min and 24 h after the delivery of electric pulses in cells that were reversibly electroporated. In addition, contrast agent was present in irreversibly electroporated cells 25 min after the delivery of electric pulses but was no longer detected in irreversibly electroporated cells after 24 h. Inductively coupled plasma mass spectrometry showed a proportional decrease in gadolinium content per cell with shortening of T1 relaxation time (R 2 = 0.88 and p = 0.0191). CONCLUSIONS Our results demonstrate that the contrast agent is entrapped in cells exposed to reversible electroporation but exits from cells exposed to irreversible electroporation within 24 h, thus confirming the hypothesis on which detection experiments in vivo were based.
Collapse
Affiliation(s)
- Marko Strucic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Vidic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Sersa
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Computer optimization of conductive gels for electrochemotherapy. Med Eng Phys 2021; 98:133-139. [PMID: 34848032 DOI: 10.1016/j.medengphy.2021.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
Electrochemotherapy (ECT) requires covering the entire tumor and safe margins with a suitable pulsed electric field (PEF). The PEF distribution depends on the biological and electrical parameters. The biological tissue may have diffractive geometry with non-linear conductivity behavior due to electroporation. That characteristic may provoke ECT-insufficient electric field regions, also known as blind spots. The conductive gels can fill holes and bumps, being a tool to homogenize the electric field. We executed an in vitro vegetal tissue experiment to validate a numerical model under different gels conditions. We used a study case in silico experiment to investigate gel influence on PEF distribution and electrical current. We propose a case-oriented methodology to optimize the gel during the ECT pre-treatment. Results show that the optimized gel completely treats a region of interest while avoiding unnecessary current increase and damage to healthy tissue by over treatment. The optimized gel conductivity may be lower than the previously reported (0.5 to 1 S/m) and may be in the range of the commercially available gels. For a veterinary mastocytoma exophytic nodule ECT case study, using needles electrode, the 0.2 S/m gel is the optimum gel.
Collapse
|
3
|
Sánchez-Velázquez P, Castellví Q, Villanueva A, Iglesias M, Quesada R, Pañella C, Cáceres M, Dorcaratto D, Andaluz A, Moll X, Burdío JM, Grande L, Ivorra A, Burdío F. Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis. Sci Rep 2017; 7:44821. [PMID: 28327623 PMCID: PMC5361088 DOI: 10.1038/srep44821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) has recently gained in popularity as an ablative technique, however little is known about its oncological long-term outcomes. To determine the long-time survival of animals treated with a high dose of IRE and which histological changes it induces in tumoral tissue, IRE ablation was performed in forty-six athymic-nude mice with KM12C tumors implanted in the liver by applying electric current with different voltages (2000 V/cm, 1000 V/cm). The tumors were allowed to continue to grow until the animals reached the end-point criteria. Histology was harvested and the extent of tumor necrosis was semi-quantitatively assessed. IRE treatment with the 2000 V/cm protocol significantly prolonged median mouse survival from 74.3 ± 6.9 days in the sham group to 112.5 ± 15.2 days in the 2000 V/cm group. No differences were observed between the mean survival of the 1000 V/cm and the sham group (83.2 ± 16.4 days, p = 0.62). Histology revealed 63.05% ± 23.12 of tumor necrosis in animals of the 2000 V/cm group as compared to 17.50% ± 2.50 in the 1000 V/cm group and 25.6% ± 22.1 in the Sham group (p = 0.001). IRE prolonged the survival of animals treated with the highest electric field (2000 V/cm). The animals in this group showed significantly higher rate of tumoral necrosis.
Collapse
Affiliation(s)
- P Sánchez-Velázquez
- Department of Surgery, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Q Castellví
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018, Barcelona, Spain
| | - A Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Av. de la Granvia de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Iglesias
- Departament of Pathology, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain.,Universitat Autònoma de Barcelona, Plaça Cívica, s/n, 08193 Bellaterra, Barcelona, Spain
| | - R Quesada
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - C Pañella
- Department of Surgery, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - M Cáceres
- Department of Surgery, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - D Dorcaratto
- Department of Surgery, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - A Andaluz
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona (U.A.B.), Plaza Cívica, s/n, 08193 Bellaterra, Barcelona, Spain
| | - X Moll
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona (U.A.B.), Plaza Cívica, s/n, 08193 Bellaterra, Barcelona, Spain
| | - J M Burdío
- Department of Electric Engineering and Communications, University of Zaragoza, Pedro Cerbuna, 12, 50018 Zaragoza, Spain
| | - L Grande
- Department of Surgery, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - A Ivorra
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018, Barcelona, Spain.,Serra Húnter Fellow, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018, Barcelona, Spain
| | - F Burdío
- Department of Surgery, Hospital del Mar, Passeig Marítim 25-29, 08003, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Liu T, Dodds E, Leong SY, Eyres GT, Burritt DJ, Oey I. Effect of pulsed electric fields on the structure and frying quality of “kumara” sweet potato tubers. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Wandel A, Ben-David E, Ulusoy BS, Neal R, Faruja M, Nissenbaum I, Gourovich S, Goldberg SN. Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode. J Vasc Interv Radiol 2016; 27:1441-1450.e2. [PMID: 27475242 DOI: 10.1016/j.jvir.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To optimize single-insertion bipolar irreversible electroporation (IRE) by characterizing effects of electric parameters and controlling tissue electric properties in a porcine model. MATERIALS AND METHODS Single-insertion electrode bipolar IRE was performed in 28 in vivo pig livers (78 ablations). First, effects of voltage (2,700-3,000 V), number of pulses, repeated cycles (1-6 cycles), and pulse width (70-100 µs) were studied. Next, electric conductivity was altered by instillation of hypertonic and hypotonic fluids. Finally, effects of thermal stabilization were assessed using internal electrode cooling. Treatment effect was evaluated 2-3 hours after IRE. Dimensions were compared and subjected to statistical analysis. RESULTS Delivering 3,000 V at 70 µs for a single 90-pulse cycle yielded 3.8 cm ± 0.4 × 2.0 cm ± 0.3 of ablation. Applying 6 cycles of energy increased ablation to 4.5 cm ± 0.4 × 2.6 cm ± 0.3 (P < .001). Further increasing pulse lengths to 100 µs (6 cycles) increased ablation to 5.0 cm ± 0.4 × 2.9 cm ± 0.3 (P < .001) but resulted in electric spikes and system crashes in 40%-50% of cases. Increasing tissue electric conductivity via hypertonic solution instillation in surrounding tissues increased frequency of generator crashes, whereas continuous instillation of distilled water eliminated this arcing phenomenon but reduced ablation to 2.3 cm ± 0.1. Controlled instillation of distilled water when electric arcing was suspected from audible popping produced ablations of 5.3 cm ± 0.6 × 3.1 cm ±0.3 without crashes. Finally, 3.1 cm ± 0.1 short-axis ablation was achieved without system crashes with internal electrode perfusion at 37°C versus 2.3 cm ± 0.1 with 4°C-10°C perfusion (P < .001). CONCLUSIONS Bipolar IRE ablation zones can be increased with repetitive high voltage and greater pulse widths accompanied by either judicious instillation of hypotonic fluids or internal electrode perfusion to minimize unwanted electric arcing.
Collapse
Affiliation(s)
- Ayelet Wandel
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel; Department of Diagnostic Imaging, Wolfson Medical Center, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Holon, Israel
| | - Eliel Ben-David
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel.
| | - B Said Ulusoy
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel
| | | | - Mohammad Faruja
- Department of Surgery, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel
| | - Isaac Nissenbaum
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel
| | - Svetlana Gourovich
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel
| | - S Nahum Goldberg
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 9112001, Israel
| |
Collapse
|
6
|
Castellví Q, Ginestà MM, Capellà G, Ivorra A. Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated. Bioelectrochemistry 2015; 105:16-24. [PMID: 25955102 DOI: 10.1016/j.bioelechem.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41 °C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase.
Collapse
Affiliation(s)
| | - Mireia M Ginestà
- Institut Català d'Oncologia-IDIBELL, Hospital Duran i Reynals, l'Hospitalet de Llobregat, Spain
| | - Gabriel Capellà
- Institut Català d'Oncologia-IDIBELL, Hospital Duran i Reynals, l'Hospitalet de Llobregat, Spain
| | | |
Collapse
|
7
|
Dunki-Jacobs EM, Philips P, Martin RCG. Evaluation of Resistance as a Measure of Successful Tumor Ablation During Irreversible Electroporation of the Pancreas. J Am Coll Surg 2014; 218:179-87. [DOI: 10.1016/j.jamcollsurg.2013.10.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
8
|
Sahakian AV, Al-Angari HM, Adeyanju OO. Electrode activation sequencing employing conductivity changes in irreversible electroporation tissue ablation. IEEE Trans Biomed Eng 2011; 59:604-7. [PMID: 22194234 DOI: 10.1109/tbme.2011.2180722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Irreversible electroporation (IRE) uses high-voltage pulses applied to tissue, which cause dielectric breakdown of cell membranes resulting in cell death. IRE is a promising technique for ablation of nonresectable tumors because it can be configured to spare critical structures such as blood vessels. A consequence of pulse application is an increase in tissue electrical conductivity due to current pathways being opened in cell membranes. We propose a novel IRE method introducing electrode switching and pulse sequencing in which tissue conductivity is first increased using preparatory pulses in order to form high-conductivity zones, which then helps provide higher electric field intensity within the targeted tissue as subsequent pulses are applied, and hence, enhances the efficiency and selectivity of the IRE treatment. We demonstrate the potential of this method using computational models on simple geometries.
Collapse
Affiliation(s)
- Alan V Sahakian
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
9
|
Ersus S, Barrett DM. Determination of membrane integrity in onion tissues treated by pulsed electric fields: Use of microscopic images and ion leakage measurements. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2010.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts. IRREVERSIBLE ELECTROPORATION 2010. [DOI: 10.1007/978-3-642-05420-4_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Shafiee H, Garcia PA, Davalos RV. A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation. J Biomech Eng 2009; 131:074509. [PMID: 19640145 DOI: 10.1115/1.3143027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intense but short electrical fields can increase the permeability of the cell membrane in a process referred to as electroporation. Reversible electroporation has become an important tool in biotechnology and medicine. The various applications of reversible electroporation require cells to survive the procedure, and therefore the occurrence of irreversible electroporation (IRE), following which cells die, is obviously undesirable. However, for the past few years, IRE has begun to emerge as an important minimally invasive nonthermal ablation technique in its own right as a method to treat tumors and arrhythmogenic regions in the heart. IRE had been studied primarily to define the upper limit of electrical parameters that induce reversible electroporation. Thus, the delineation of IRE from thermal damage due to Joule heating has not been thoroughly investigated. The goal of this study was to express the upper bound of IRE (onset of thermal damage) theoretically as a function of physical properties and electrical pulse parameters. Electrical pulses were applied to THP-1 human monocyte cells, and the percentage of irreversibly electroporated (dead) cells in the sample was quantified. We also determined the upper bound of IRE (onset of thermal damage) through a theoretical calculation that takes into account the physical properties of the sample and the electric pulse characteristics. Our experimental results were achieved below the theoretical curve for the onset of thermal damage. These results confirm that the region to induce IRE without thermal damage is substantial. We believe that our new theoretical analysis will allow researchers to optimize IRE parameters without inducing deleterious thermal effects.
Collapse
Affiliation(s)
- Hadi Shafiee
- Bioelectromechanical Systems Laboratory, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
12
|
Fantozzi F, Arturoni E, Barbucci R. The effects of the electric fields on hydrogels to achieve antitumoral drug release. Bioelectrochemistry 2009; 78:191-5. [PMID: 19783227 DOI: 10.1016/j.bioelechem.2009.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 11/30/2022]
Abstract
The achievement of electrochemotherapy was obtained using electrodes covered with guar gum (GG) hydrogel swollen in a sulfate bleomycin solution. The bleomycin delivery into the plasma membranes of cancer cells occurs only when field strength (V/cm) was applied, decreasing the drug contact with healthy tissues. The effect of the delivered bleomycin at different concentrations was examined on tumoral mouse fibroblast (NIH3T3) and human coronary artery endothelial cells. The GG hydrogel released the drug only when the field strength was applied and the amount depended on the electromotive force. Consequently, cellular survival depended on the field strength. Moreover in vitro results showed a bigger cellular mortality of the NIH3T3 compared with endothelial cells. The best parameters to be utilized in electrochemotherapy were ascertained.
Collapse
Affiliation(s)
- Federica Fantozzi
- C.R.I.S.M.A., University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | | | | |
Collapse
|
13
|
Ivorra A, Al-Sakere B, Rubinsky B, Mir LM. Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies. Phys Med Biol 2008; 53:6605-18. [DOI: 10.1088/0031-9155/53/22/020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Optimum Conductivity of Gels for Electric Field Homogenization in Tissue Electroporation Therapies. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-74471-9_143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|