1
|
Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. MEMBRANES 2022; 12:1225. [PMID: 36557132 PMCID: PMC9782681 DOI: 10.3390/membranes12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.
Collapse
|
2
|
Ionic liquid-multi walled carbon nanotubes-l-lysine modified glassy carbon electrode for detection of prednisolone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Shaikh WA, Chakraborty S, Owens G, Islam RU. A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade. APPLIED NANOSCIENCE 2021; 11:2625-2660. [PMID: 34745812 PMCID: PMC8556825 DOI: 10.1007/s13204-021-02135-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022]
Abstract
Silver nanoparticle (AgNP) has been one of the most commonly used nanoparticles since the past decade for a wide range of applications, including environmental, agricultural, and medical fields, due to their unique physicochemical properties and ease of synthesis. Though chemical and physical methods of fabricating AgNPs have been quite popular, they posed various environmental problems. As a result, the bioinspired route of AgNP synthesis emerged as the preferred pathway for synthesis. This review focuses extensively on the biosynthesis of AgNP-mediated through different plant species worldwide in the past 10 years. The most popularly utilized application areas have been highlighted with their in-depth mechanistic approach in this review, along with the discussion on the different phytochemicals playing an important role in the bio-reduction of silver ions. In addition to this, the environmental factors which govern their synthesis and stability have been reviewed. The paper systematically analyses the trend of research on AgNP biosynthesis throughout the world through bibliometric analysis. Apart from this, the feasibility analysis of the plant-mediated synthesis of nanoparticles and their applications have been intrigued considering the perspectives of engineering, economic, and environmental limitations. Thus, the review is not only a comprehensive summary of the achievements and current status of plant-mediated biosynthesis but also provides insight into emerging future research frontier. Supplementary Information The online version contains supplementary material available at 10.1007/s13204-021-02135-5.
Collapse
Affiliation(s)
- Wasim Akram Shaikh
- Environmental Engineering Laboratory, Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Mesra, Jharkhand 835215 India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Mesra, Jharkhand 835215 India
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, 5095 Australia
| | - Rafique Ul Islam
- Department of Chemistry, School of Physical and Material Sciences, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar 845401 India
| |
Collapse
|
4
|
A novel multicomponent TMDC, MoS2–WS2–CoSx, as an effective electrocatalyst for simultaneous detection ultra-levels of prednisolone and rutin in human body fluids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Abstract
Background:
This review investigates the ophthalmic drugs that have been studied with
voltammetry in the web of science database in the last 10 years.
Introduction:
Ophthalmic drugs are used in the diagnosis, evaluation and treatment of various ophthalmological
diseases and conditions. A significant literature has emerged in recent years that investigates
determination of these active compounds via electroanalytical methods, particularly voltammetry. Low
cost, rapid determination, high availability, efficient sensitivity and simple application make voltammetry
one of the most used methods for determining various kinds of drugs including ophthalmic ones.
Methods:
In this particular review, we searched the literature via the web of science database for ophthalmic
drugs which are investigated with voltammetric techniques using the keywords of voltammetry,
electrochemistry, determination and electroanalytical methods.
Results:
We found 33 types of pharmaceuticals in nearly 140 articles. We grouped them clinically into
seven major groups as antibiotics, antivirals, non-steroidal anti-inflammatory drugs, anti-glaucomatous
drugs, steroidal drugs, local anesthetics and miscellaneous. Voltammetric techniques, electrodes, optimum
pHs, peak potentials, limit of detection values, limit of quantification values, linearity ranges,
sample type and interference effects were compared.
Conclusion:
Ophthalmic drugs are widely used in the clinic and it is important to determine trace
amounts of these species analytically. Voltammetry is a preferred method for its ease of use, high sensitivity,
low cost, and high availability for the determination of ophthalmic drugs as well as many other
medical drugs. The low limits of detection values indicate that voltammetry is quite sufficient for determining
ophthalmic drugs in many media such as human serum, urine and ophthalmic eye drops.
Collapse
Affiliation(s)
- Onur Inam
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar University of Health Sciences, Afyonkarahisar, 03200, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
6
|
Suresh L, Bondili JS, Brahman PK. Fabrication of Immunosensor Based on Polyaniline, Fullerene‐C
60
and Palladium Nanoparticles Nanocomposite: An Electrochemical Detection Tool for Prostate Cancer. ELECTROANAL 2020. [DOI: 10.1002/elan.201900659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lakkavarapu Suresh
- Electroanalytical Lab, Department of ChemistryKoneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
- Department of BiotechnologyKoneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
| | | | - Pradeep Kumar Brahman
- Electroanalytical Lab, Department of ChemistryKoneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
| |
Collapse
|
7
|
Beitollahi H, Zaimbashi R, Mahani MT, Tajik S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 2020; 134:107497. [PMID: 32222669 DOI: 10.1016/j.bioelechem.2020.107497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/25/2022]
Abstract
In the present study, an original electrode fabrication approach was devised to create a label free sensitive electrochemical aptasensor for the detection of Homocysteine (Hcy) (Homocysteine signal was used for detection). To bind certain targets, synthetic oligonucleotides used as aptamers (APs) were specifically selected. Aptamers are substitutes for antibodies for analytical devices because of their sensitivity and high affinity. In this study, Hcy-Binding-Aptamer (HBA) was grafted onto the surface of Au nanoparticles/Glassy Carbon Electrode (Au/GCE) in order to create an aptasensor. The effects of buffer concentration, buffer type, interaction time, and aptamer concentration were investigated and optimized. In addition, Differential Pulse Voltammetry (DPV) was implemented to identify homocysteine. Favorable performance was achieved at a detection limit of 0.01 μM (S/N = 3) and linear range 0.05-20.0 μM. Furthermore, the fabricated aptasensor displayed desirable stability and reproducibility. The developed electrochemical aptasensor was found to have reasonable selectivity for the detection of homocysteine in the presence of cysteine and methionine. Analysis of real samples showed good ability of the proposed homocysteine biosensor to provide sensitive, quick, easy, and cost effective measurement of homocysteine in human blood serum and urine samples.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Reza Zaimbashi
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Masoud Torkzadeh Mahani
- Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advance Technology, Kerman, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Begines B, Alcudia A, Aguilera-Velazquez R, Martinez G, He Y, Trindade GF, Wildman R, Sayagues MJ, Jimenez-Ruiz A, Prado-Gotor R. Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing. Sci Rep 2019; 9:16097. [PMID: 31695064 PMCID: PMC6834569 DOI: 10.1038/s41598-019-52314-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 11/15/2022] Open
Abstract
Nowadays there is a worldwide growing interest in the Inkjet Printing technology owing to its potentially high levels of geometrical complexity, personalization and resolution. There is also social concern about usage, disposal and accumulation of plastic materials. In this work, it is shown that sugar-based biodegradable polyurethane polymers exhibit outstanding properties as polymer-matrix for gold nanoparticles composites. These materials could reach exceptional stabilization levels, and demonstrated potential as novel robust inks for Inkjet based Printing. Furthermore, a physical comparison among different polymers is discussed based on stability and printability experiments to search for the best ink candidate. The University of Seville logo was printed by employing those inks, and the presence of gold was confirmed by ToF-SIMS. This approach has the potential to open new routes and applications for fabrication of enhanced biomedical nanometallic-sensors using stabilized AuNP.
Collapse
Affiliation(s)
- Belen Begines
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Ana Alcudia
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Raul Aguilera-Velazquez
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Guillermo Martinez
- Department of Organic and Medicinal Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Yinfeng He
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gustavo F Trindade
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Material Science Institute of Seville, CSIC/US, Seville, 41092, Spain
| | - Ricky Wildman
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Aila Jimenez-Ruiz
- Department of Physical Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain.
| | - Rafael Prado-Gotor
- Department of Physical Chemistry, School of Pharmacy, University of Seville, Seville, 41012, Spain.
| |
Collapse
|
9
|
Bilal M, Rasheed T, Iqbal HMN, Hu H, Zhang X. Silver Nanoparticles: Biosynthesis and Antimicrobial Potentialities. INT J PHARMACOL 2017; 13:832-845. [DOI: 10.3923/ijp.2017.832.845] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Arabi M, Ghaedi M, Ostovan A, Wang S. Synthesis of lab-in-a-pipette-tip extraction using hydrophilic nano-sized dummy molecularly imprinted polymer for purification and analysis of prednisolone. J Colloid Interface Sci 2016; 480:232-239. [DOI: 10.1016/j.jcis.2016.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022]
|
11
|
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016; 7:17-28. [PMID: 26843966 PMCID: PMC4703479 DOI: 10.1016/j.jare.2015.02.007] [Citation(s) in RCA: 1097] [Impact Index Per Article: 121.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles.
Collapse
Affiliation(s)
| | | | | | - Saiqa Ikram
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
12
|
Smajdor J, Piech R, Paczosa-Bator B. A Novel Method of High Sensitive Determination of Prednisolone on Renewable Mercury Film Silver Based Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Functionalized fullerene (C 60 ) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron 2015; 63:354-364. [DOI: 10.1016/j.bios.2014.07.044] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/17/2022]
|
14
|
OYAMA M, CHEN X, CHEN X. Recent Nanoarchitectures in Metal Nanoparticle-Graphene Nanocomposite Modified Electrodes for Electroanalysis. ANAL SCI 2014; 30:529-38. [DOI: 10.2116/analsci.30.529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Munetaka OYAMA
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Xiaomei CHEN
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
- College of Biological Engineering, Jimei University
| | - Xi CHEN
- State Key Laboratory of Marine Environmental Science and Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University
| |
Collapse
|
15
|
Yadav SK, Chandra P, Goyal RN, Shim YB. A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Anal Chim Acta 2013; 762:14-24. [DOI: 10.1016/j.aca.2012.11.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
16
|
Chromatography-Based Determination of Anabolic Steroids in Biological Fluids: Future Prospects Using Electrochemistry and Miniaturized Microchip Device. Chromatographia 2012. [DOI: 10.1007/s10337-012-2351-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2833] [Impact Index Per Article: 217.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
18
|
|
19
|
Rezaei B, Mirahmadi-Zare SZ. Nanoscale Manipulation of Prednisolone as Electroactive Configuration Using Molecularly Imprinted-Multiwalled Carbon Nanotube Paste Electrode. ELECTROANAL 2011. [DOI: 10.1002/elan.201100261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
OYAMA M. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis. ANAL SCI 2010; 26:1-12. [DOI: 10.2116/analsci.26.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Wang Y, Deng J, Di J, Tu Y. Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor. Electrochem commun 2009. [DOI: 10.1016/j.elecom.2009.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|