1
|
Li C, Zhang Y, Shi W, Peng Y, Han Y, Jiang S, Dong X, Zhang R. Viral diversity within marine biofilms and interactions with corrosive microbes. ENVIRONMENTAL RESEARCH 2024; 263:119991. [PMID: 39276831 DOI: 10.1016/j.envres.2024.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In marine environments, a wide variety of microbes like bacteria, and archaea influence on the corrosion of materials. Viruses are widely distributed in biofilms among these microbes and may affect the corrosion process through interactions with key corrosive prokaryotes. However, understanding of the viral communities within biofilms and their interactions with corrosive microbes remains is limited. To improve this knowledge gap, 53 metagenomes were utilized to investigate the diversity of viruses within biofilms on 8 different materials and their interactions with corrosive microbes. Notably, the viruses within biofilms predominantly belonged to Caudoviricetes, and phylogenetic analysis of Caudoviricetes and protein-sharing networks with other environments revealed the presence of numerous novel viral clades in biofilms. The virus‒host linkages revealed a close association between viruses and corrosive microbes in biofilms. This means that viruses may modulate host corrosion-related metabolism through auxiliary metabolic genes. It was observed that the virus could enhance host resistance to metals and antibiotics via horizontal gene transfer. Interestingly, viruses could protect themselves from host antiviral systems through anti-defense systems. This study illustrates the diversity of viruses within biofilms formed on materials and the intricate interactions between viruses and corrosive microbes, showing the potential roles of viruses in corrosive biofilms.
Collapse
Affiliation(s)
- Chengpeng Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenqing Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shuqing Jiang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
2
|
Ma S, Li Y, Guan F, Zhang L, Li J, Tai Y, Ren H, Duan J. Variations in microbial community on different materials in Sanya Marine Environment Experimental Station, China. Can J Microbiol 2022; 68:447-455. [PMID: 35412394 DOI: 10.1139/cjm-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine biofouling occurs through the colonization of undesired microorganisms on the surfaces of structures. In this study, four immersion cycles (2, 5, 15, and 25 days) of total immersion in seawater were carried out at the Sanya Marine Environmental Test Station using three materials: industrial pure titanium (Ti), hot-dip zinc (Zn), and glass slide (GS). Three phyla, four classes, and nine bacterial genera were identified. The dominant genera were Pseudomonas, Alteromonas, and Pseudoalteromonas. The number of bacteria increased with soaking time. Sixty-one species of diatoms belonging to 30 genera, 24 families, and 16 orders were detected, among which the dominant genera were Amphora, Nitzschia, and Navicula. Four genera of ciliates belonged to two classes, three orders, and four families, among which the dominant species were Euplotes sp. and Uronema marinum. Tubular polychaetes was the dominant metazoans. Species diversity increased over time. The highest biofilm diversity was observed on the GS surface. The diversity of biofilms on the Ti surface was higher than that on the Zn surface. This study provides basic data for marine material research, marine corrosion, and national defence construction.
Collapse
Affiliation(s)
- Shide Ma
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Guan
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ju Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yu Tai
- Qingdao Tony Machinery and Equipment Co., Ltd., Qingdao, 266000, China
| | - Haitao Ren
- Luoyang Ship Material Research Institute (LSMRI), Sanya, 572032, China
| | - Jizhou Duan
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Chugh B, Sheetal, Singh M, Thakur S, Pani B, Singh AK, Saji VS. Extracellular Electron Transfer by Pseudomonas aeruginosa in Biocorrosion: A Review. ACS Biomater Sci Eng 2022; 8:1049-1059. [PMID: 35199512 DOI: 10.1021/acsbiomaterials.1c01645] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microorganisms with extracellular electron transfer (EET) capability have gained significant attention for their different biotechnological applications, like biosensors, bioremediation, and microbial fuel cells. Current research affirmed that microbial EET potentially promotes corrosion of iron structures, termed microbiologically influenced corrosion (MIC). The sulfate-reducing (SRB) and nitrate-reducing (NRB) bacteria are the most investigated among the different MIC-promoting bacteria. Unlike extensively studied SRB corrosion, NRB corrosion has received less attention from researchers. Hence, this review focuses on EET by Pseudomonas aeruginosa, a pervasive bacterium competent for developing biofilms in marine habitats and oil pipelines. A comprehensive discussion on the fundamentals of EET mechanisms in MIC is provided first. After that, the review offers state-of-the-art insights into the latest research on the EET-assisted MIC by Pseudomonas aeruginosa. The role of electron transfer mediators has also been discussed to understand the mechanisms involved in a better way. This review will be beneficial to open up new opportunities for developing strategies for combating biocorrosion.
Collapse
Affiliation(s)
- Bhawna Chugh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Sheetal
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Manjeet Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram-796004, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Sector -2, Dwarka, New Delhi-110075, India
| | - Ashish Kumar Singh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India.,Department of Applied Sciences, Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi-110063, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Santos JCD, Lopes DRG, Silva LCF, Ramos JLL, Dias RS, Lima HS, Sousa MPD, Waldow VDA, Paula SOD, Ferreira SO, Silva CCD. Characterization of the biofilm structure and microbial diversity of sulfate-reducing bacteria from petroleum produced water supplemented by different carbon sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114189. [PMID: 34864413 DOI: 10.1016/j.jenvman.2021.114189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Colonization by sulfate-reducing bacteria (SRB) in environments associated with oil is mainly dependent on the availability of sulfate and carbon sources. The formation of biofilms by SRB increases the corrosion of pipelines and oil storage tanks, representing great occupational and operational risks and respective economic losses for the oil industry. The aim of this study was to evaluate the influence of the addition of acetate, butyrate, lactate, propionate and oil on the structure of biofilm formed in carbon steel coupons, as well as on the diversity of total bacteria and SRB in the planktonic and sessile communities from petroleum produced water. The biofilm morphology, chemical composition, average roughness and the microbial diversity was analyzed. In all carbon sources, formation of dense biofilm without morphological and/or microbial density differences was detected, with the most of cells observed in the form of individual rods. The diversity and richness indices of bacterial species in the planktonic community was greater than in the biofilm. Geotoga was the most abundant genus, and more than 85% of SRB species were common to all treatments. The functional predicted profile shown that the observed genres in planktonic communities were related to the reduction of sulfate, sulfite, elementary sulfur and other sulfur compounds, but the abundance varied between treatments. For the biofilm, the functions predicted profile for the oil treatment was the one that most varied in relation to the control, while for the planktonic community, the addition of all carbon sources interfered in the predicted functional profile. Thus, although it does not cause changes in the structure and morphology biofilm, the supplementation of produced water with different carbon sources is associated with changes in the SRB taxonomic composition and functional profiles of the biofilm and the planktonic bacterial communities.
Collapse
Affiliation(s)
| | | | | | - José Luiz Lima Ramos
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Roberto Sousa Dias
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Helena Santiago Lima
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Maíra Paula de Sousa
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
5
|
In Situ Electrochemical Characterization of a Microbial Fuel Cell Biocathode Running on Wastewater. Catalysts 2021. [DOI: 10.3390/catal11070839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The electrochemical features of microbial fuel cells’ biocathodes, running on wastewater, were evaluated by cyclic voltammetry. Ex situ and in situ electrochemical assays were performed and the redox processes associated with the presence of microorganisms and/or biofilms were attained. Different controls using sterile media (abiotic cathode microbial fuel cell) and membranes covering the electrodes were performed to evaluate the source of the electrochemistry response (surface biofilms vs. biotic electrolyte). The bacteria presence, in particular when biofilms are allowed to develop, was related with the enhanced active redox processes associated with an improved catalytic activity, namely for oxygen reduction, when compared with the results attained for an abiotic microbial fuel cell cathode. The microbial main composition was also attained and is in agreement with other reported studies. The current study aims contributing to the establishment of the advantages of using biocathodes rather than abiotic, whose conditions are frequently harder to control and to contribute to a better understanding of the bioelectrochemical processes occurring on the biotic chambers and the electrode surfaces.
Collapse
|
6
|
Effect of sulfate reducing bacteria and stress on corrosion behavior of X100 steel in sea mud environment. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Balakrishnan A, Jena G, Pongachira George R, Philip J. Polydimethylsiloxane-graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7404-7422. [PMID: 33033928 DOI: 10.1007/s11356-020-11068-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate enhanced anti-corrosion and anti-biofouling properties of graphene oxide-silica-polydimethylsiloxane (GSP) coating on carbon steel (CS). Electrochemical analyses of GSP-coated carbon steel exposed to Gram-positive Bacillus sp., Gram-negative Pseudomonas sp., and freshwater bacterial cultures for 72 h showed a 3-5 orders of magnitude reduction in icorr values and high impedance values (107 Ω) as compared with polished specimens. The corrosion protection efficiency of GSP-coated specimens was 99.9% against Bacillus sp. and freshwater culture and it was 89.6% against Pseudomonas sp. Evaluation of anti-biofouling property of GSP coating using microbiological and epifluorescence microscopic techniques showed three order reductions in total viable cells on GSP-coated specimens exposed to bacterial cultures. Confocal laser scanning microscopic analysis of biofilm architecture confirmed a significant reduction of biomass and biofilm thickness on GSP-coated CS demonstrating an excellent anti-biofouling activity of GSP.
Collapse
Affiliation(s)
- Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, India.
| | - Geetisubhra Jena
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Rani Pongachira George
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
8
|
Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment. Bioelectrochemistry 2019; 129:10-17. [DOI: 10.1016/j.bioelechem.2019.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/02/2023]
|
9
|
Jin Y, Li Z, Zhou E, Lekbach Y, Xu D, Jiang S, Wang F. Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Basera P, Lavania M, Lal B. Potential of dynamic bacterial communities in the bio-corrosion process: a proof study with surface morphology of metal coupons. RSC Adv 2019; 9:17040-17050. [PMID: 35519851 PMCID: PMC9064554 DOI: 10.1039/c9ra01959f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Bio-corrosion is a well-known phenomenon of corrosion caused by bacterial communities. It is considered as a worldwide problem as it causes billion-dollar damages to the pipeline industries (mainly oil and gas) each year. Therefore, this investigation was undertaken to understand the significance of bacterial communities in the bio-corrosion system by studying the physical alteration in the metal surface of coupons through different techniques (EIS, XRD, FT-IR and SEM) and the community identification of consortia responsible for the corrosion. Furthermore, supporting data were obtained from APS reductase assays and DAPI microscopy. The EIS plots suggested that the metal coupons in a biotic system were more prone to corrosion than the coupons in an abiotic system. FT-IR analysis of the biotic system validated the presence of magnetite (Fe3O4), goethite (α-FeOOH) and lepidocrocite (γ-FeOOH); the XRD spectrum confirmed the presence of oxide and sulphide of iron (Fe3O4 and FeS), which are considered as notable compounds for corroding substances. The community profile indicated the presence of mixed anaerobic consortia containing Firmicutes and Proteobacteria (beta and delta) in the cultured sample. The presence of Desulfovibro sp. and Clostridium sp. in the consortium revealed a synergistic effect, where the by-product of one species acted as a carbon source for the other species, which further established the bio-corrosion process by depositing oxides of iron and sulphur on the metal coupon surface. This study signifies that a mixed culture has a greater impact on the bio-corrosion process than the pure and single culture of Desulfovibro sp. Furthermore, this study also provides a bio-monitoring strategy for the pipeline industries.
Collapse
Affiliation(s)
- Priyanka Basera
- The Energy and Resources Institute (TERI) IHC Complex 110003 New Delhi India
| | - Meeta Lavania
- The Energy and Resources Institute (TERI) IHC Complex 110003 New Delhi India
| | - Banwari Lal
- The Energy and Resources Institute (TERI) IHC Complex 110003 New Delhi India
| |
Collapse
|
11
|
Li Z, Wan H, Song D, Liu X, Li Z, Du C. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil. Bioelectrochemistry 2019; 126:121-129. [DOI: 10.1016/j.bioelechem.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
12
|
Use of carbon steel ball bearings to determine the effect of biocides and corrosion inhibitors on microbiologically influenced corrosion under flow conditions. Appl Microbiol Biotechnol 2018; 102:5741-5751. [PMID: 29749561 DOI: 10.1007/s00253-018-8974-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/16/2022]
Abstract
A consortium of sulfate-reducing bacteria consisting mostly of Desulfovibrio, Desulfomicrobium, and Desulfocurvus from oil field produced water was cultivated in a chemostat, receiving medium with 20 mM formate and 10 mM sulfate as the energy and 1 mM acetate as the carbon source. The chemostat effluent, containing 5 mM sulfide and 0.5 mM of residual acetate, was passed through 1-ml syringe columns with 60 carbon steel ball bearings (BBs) of 53.6 ± 0.1 mg each at a flow rate of 0.8 ml/h per column. These were treated every 5 days with 1.6 ml of 300 ppm of glutaraldehyde (Glut), tetrakis(hydroxymethyl)phosphonium sulfate (THPS), benzalkonium chloride (BAC), or Glut/BAC, a mixture of Glut and BAC. Alternatively, BBs were treated with 33% (v/v) of a water-soluble (CR_W) or an oil-soluble (CR_O1 or CR_O3) corrosion inhibitor for 20 s after which the corrosion inhibitor was drained off and BBs were packed into columns. The effluent of untreated control columns had no acetate. Treatment with the chemically reactive biocides Glut and THPS, as well as with Glut/BAC, gave a transient increase of acetate indicating decreased microbial activity. This was not seen with BAC alone indicating it to be the least effective biocide. Relative to untreated BBs (100%), those treated periodically with Glut, THPS, BAC, or Glut/BAC had a general weight loss corrosion rate of 91, 81, 45, and 36% of the untreated rate of 0.104 ± 0.004 mm/year, respectively. Single treatment with corrosion inhibitors decreased corrosion to 48, 2, and 1% of the untreated rate for CR_W, CR_O1 and CR_O3, respectively. Analysis of the distribution of corrosion rates from the weight loss of individual BBs (N = 120) indicated the presence of a more slowly and a more rapidly corroding group. BAC treatment prevented emergence of the latter, and this quaternary ammonium detergent appeared most effective in decreasing corrosion not because of its biocidal properties, but because of its corrosion inhibitory properties.
Collapse
|
13
|
Yang Y, Wikieł AJ, Dall'Agnol LT, Eloy P, Genet MJ, Moura JJG, Sand W, Dupont-Gillain CC, Rouxhet PG. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures. BIOFOULING 2016; 32:95-108. [PMID: 26769222 DOI: 10.1080/08927014.2015.1114609] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.
Collapse
Affiliation(s)
- Yi Yang
- a Institute of Condensed Matter and Nanoscience (IMCN) - Bio & Soft Matter (BSMA) , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Agata J Wikieł
- b Biofilm Centre, Aquatische Biotechnologie , Universität Duisburg - Essen , Essen , Germany
| | - Leonardo T Dall'Agnol
- c REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Pierre Eloy
- a Institute of Condensed Matter and Nanoscience (IMCN) - Bio & Soft Matter (BSMA) , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Michel J Genet
- a Institute of Condensed Matter and Nanoscience (IMCN) - Bio & Soft Matter (BSMA) , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - José J G Moura
- c REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Wolfgang Sand
- b Biofilm Centre, Aquatische Biotechnologie , Universität Duisburg - Essen , Essen , Germany
| | - Christine C Dupont-Gillain
- a Institute of Condensed Matter and Nanoscience (IMCN) - Bio & Soft Matter (BSMA) , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Paul G Rouxhet
- a Institute of Condensed Matter and Nanoscience (IMCN) - Bio & Soft Matter (BSMA) , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| |
Collapse
|
14
|
Lv L, Yuan S, Zheng Y, Liang B, Pehkonen SO. Surface Modification of Mild Steel with Thermally Cured Antibacterial Poly(vinylbenzyl chloride)–Polyaniline Bilayers for Effective Protection against Sulfate Reducing Bacteria Induced Corrosion. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501654b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Lv
- Multi-phase Mass Transfer & Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Multi-phase Mass Transfer & Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Zheng
- Multi-phase Mass Transfer & Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Liang
- Multi-phase Mass Transfer & Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Simo O. Pehkonen
- Department
of Environmental Sciences, University of Eastern Finland, 70740 Kuopio, Finland
| |
Collapse
|