1
|
Gholizadeh Z, Tavakkol‐Afshari J, Nikpoor AR, Jalali SA, Jaafari MR. Enhanced immune response induced by P5 HER2/neu-derived peptide-pulsed dendritic cells as a preventive cancer vaccine. J Cell Mol Med 2018; 22:558-567. [PMID: 28944998 PMCID: PMC5742681 DOI: 10.1111/jcmm.13343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells are special and powerful antigen-presenting cells that can induce primary immune responses against tumour-associated antigens. They can present antigens via both MHC-I and MHC-II, so they have the ability to stimulate both cytotoxic T lymphocytes and T helper cells. Furthermore, CD8+ cytotoxic T lymphocytes require activation by CD4+ T cells. This requires a CD4+ T cell activator molecule, of which PADRE is one of the best. We chose an approach to use both of these important arms of the immune system. We prepared dendritic cells from mouse bone marrow, loaded them with our target peptides (P5 peptide alone or P5 + PADRE), and then injected these pulsed dendritic cells alone or in combination with CpG-ODN (as adjuvant) into BALB/C mice. After the last boosting dose, mice were inoculated with TUBO cells, which overexpress HER2/neu. Two weeks after the tumour cell injection, immunological tests were performed on splenocyte suspensions, and the remaining mice were evaluated for tumour growth and survival. Our data indicate the formulation that contains PADRE plus P5 loaded onto DC in combination with CpG-ODN was the most effective formulation at inducing immune responses. Interferon production in CD4+ and CD8+ gated cells, cytotoxicity rates of target cells and mice survival were all significantly greater in this group than in controls, and all the mice in this group were tumour-free throughout the experiment. Based on our results and the role of HER2/neu as a candidate in human immunotherapy, this approach may be an effective cancer treatment.
Collapse
Affiliation(s)
- Zahra Gholizadeh
- Immunogenetic and Cell Culture DepartmentImmunology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Jalil Tavakkol‐Afshari
- Immunogenetic and Cell Culture DepartmentImmunology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amin Reza Nikpoor
- Immunogenetic and Cell Culture DepartmentImmunology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Amir Jalali
- Department of ImmunologyMedical SchoolShahid Beheshti University of Medical SciencesTehranIran
| | - Mahmoud Reza Jaafari
- Biotechnology Research CenterNanotechnology Research CenterMashhad University of Medical SciencesMashhadIran
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Lopes A, Vanvarenberg K, Préat V, Vandermeulen G. Codon-Optimized P1A-Encoding DNA Vaccine: Toward a Therapeutic Vaccination against P815 Mastocytoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:404-415. [PMID: 28918040 PMCID: PMC5537203 DOI: 10.1016/j.omtn.2017.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
DNA vaccine can be modified to increase protein production and modulate immune response. To enhance the efficiency of a P815 mastocytoma DNA vaccine, the P1A gene sequence was optimized by substituting specific codons with synonymous ones while modulating the number of CpG motifs. The P815A murine antigen production was increased with codon-optimized plasmids. The number of CpG motifs within the P1A gene sequence modulated the immunogenicity by inducing a local increase in the cytokines involved in innate immunity. After prophylactic immunization with the optimized vaccines, tumor growth was significantly delayed and mice survival was improved. Consistently, a more pronounced intratumoral recruitment of CD8+ T cells and a memory response were observed. Therapeutic vaccination was able to delay tumor growth when the codon-optimized DNA vaccine containing the highest number of CpG motifs was used. Our data demonstrate the therapeutic potential of optimized P1A vaccine against P815 mastocytoma, and they show the dual role played by codon optimization on both protein production and innate immune activation.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium.
| | - Gaëlle Vandermeulen
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Lambricht L, Vanvarenberg K, De Beuckelaer A, Van Hoecke L, Grooten J, Ucakar B, Lipnik P, Sanders NN, Lienenklaus S, Préat V, Vandermeulen G. Coadministration of a Plasmid Encoding HIV-1 Gag Enhances the Efficacy of Cancer DNA Vaccines. Mol Ther 2016; 24:1686-96. [PMID: 27434590 DOI: 10.1038/mt.2016.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
DNA vaccination holds great promise for the prevention and treatment of cancer and infectious diseases. However, the clinical ability of DNA vaccines is still controversial due to the limited immune response initially observed in humans. We hypothesized that electroporation of a plasmid encoding the HIV-1 Gag viral capsid protein would enhance cancer DNA vaccine potency. DNA electroporation used to deliver plasmids in vivo, induced type I interferons, thereby supporting the activation of innate immunity. The coadministration of ovalbumin (OVA) and HIV-1 Gag encoding plasmids modulated the adaptive immune response. This strategy favored antigen-specific Th1 immunity, delayed B16F10-OVA tumor growth and improved mouse survival in both prophylactic and therapeutic vaccination approaches. Similarly, a prophylactic DNA immunization against the melanoma-associated antigen gp100 was enhanced by the codelivery of the HIV-1 Gag plasmid. The adjuvant effect was not driven by the formation of HIV-1 Gag virus-like particles. This work highlights the ability of both electroporation and the HIV-1 Gag plasmid to stimulate innate immunity for enhancing cancer DNA vaccine immunogenicity and demonstrates interesting tracks for the design of new translational genetic adjuvants to overcome the current limitations of DNA vaccines in humans.
Collapse
Affiliation(s)
- Laure Lambricht
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Medical Biotechnology Center, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Pascale Lipnik
- Bio and Soft Matter, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.,Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Markelc B, Skvarca E, Dolinsek T, Kloboves VP, Coer A, Sersa G, Cemazar M. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo. Bioelectrochemistry 2015; 103:111-9. [DOI: 10.1016/j.bioelechem.2014.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023]
|
6
|
Vandermeulen G, Vanvarenberg K, De Beuckelaer A, De Koker S, Lambricht L, Uyttenhove C, Reschner A, Vanderplasschen A, Grooten J, Préat V. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation. Vaccine 2015; 33:3179-85. [PMID: 25980430 DOI: 10.1016/j.vaccine.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/10/2015] [Accepted: 05/04/2015] [Indexed: 11/28/2022]
Abstract
We investigated the influence of the site of administration of DNA vaccine on the induced immune response. DNA vaccines were administered by electroporation at three different sites: tibial cranial muscle, abdominal skin and ear pinna. Aiming to draw general conclusions about DNA vaccine delivery, we successively used several plasmids encoding either luciferase and ovalbumin as models or gp160 and P1A as vaccines against HIV and P815 mastocytoma, respectively. Low levels and duration of luciferase transgene expression were observed after electroporation of the abdominal skin, partly explaining its lower immunogenic performance as compared to the other sites of administration. Analyses of OT-I CD8+ and OT-II CD4+ T cell responses highlighted the differential impact of the delivery site on the elicited immune response. Muscle electroporation induced the strongest humoral immune response and both muscle and ear pinna sites induced cellular immunity against gp160. Ear pinna delivery generated the highest level of CTL responses against P1A but electroporation of muscle and ear pinna were equally efficient in delaying P815 growth and improving mice survival. The present study demonstrated that the site of administration is a key factor to be tested in the development of DNA vaccine.
Collapse
Affiliation(s)
- Gaëlle Vandermeulen
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laure Lambricht
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Catherine Uyttenhove
- Université catholique de Louvain, Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Brussels, Belgium
| | - Anca Reschner
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|