1
|
Kiran Raj G, Singh E, Hani U, Ramesh KVRNS, Talath S, Garg A, Savadatti K, Bhatt T, Madhuchandra K, Osmani RAM. Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. J Control Release 2023; 355:709-729. [PMID: 36805872 DOI: 10.1016/j.jconrel.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Novel therapies and drug delivery systems (DDS) emphasis on localized, personalized, triggered, and regulated drug administration have heavily implicated electrically responsive DDS. An ideal DDS must deliver drugs to the target region at therapeutically effective concentrations to elicit a pharmacological response, resulting in better prophylaxis of the disease and the treatment. Biodegradable polymers are frequently employed for in-vivo long-term release; however, dose dumping can be anticipated. As a result, current DDSs can be tagged as dubbed "Smart Biomaterials" since they only focus on an on-demand cargo release in response to a trigger or stimulation. These organic materials have been recognized for their metal-like conductivity, as well as their mechanical stability and ease of production. These biomaterials can be programmed to respond to both internal and external stimuli. External pulsed triggers are required for extrinsic stimuli-responsive materials, whereas intrinsic stimuli-responsive materials rely on localized changes in the tissue environment. Furthermore, these materials have the ability to deliver active pharmaceutical agents at a varied concentration levels and across a broad spectrum of action. Drug delivery, biomedical implant technology, biosensor technology, and tissue engineering can be listed as a few prominent applications that have sparked immense interest for conductive polymers-based research and advancements in academia as well as in industry. This review comprehensively covers a cutting-edge collection of electrically conductive polymers and composites, and provide detailed insights of recent trends and advancements allied to conductive polymers for their potential applicability in an array of diverse meadows primarily focusing on drug delivery, biosensing and therapeutics. Furthermore, progressions in their synthesis, structural and functional properties have been presented in conjunction with futuristic directions for the smooth clinical translations.
Collapse
Affiliation(s)
- G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, United States; Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay (IITB), Mumbai 400076, Maharashtra, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Komal Savadatti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - K Madhuchandra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
2
|
Palma M, Khoshnevis M, Lion M, Zenga C, Kefs S, Fallegger F, Schiavone G, Flandin IG, Lacour S, Yvert B. Chronic recording of cortical activity underlying vocalization in awake minipigs. J Neurosci Methods 2022; 366:109427. [PMID: 34852254 DOI: 10.1016/j.jneumeth.2021.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Investigating brain dynamics underlying vocal production in animals is a powerful way to inform on the neural bases of human speech. In particular, brain networks underlying vocal production in non-human primates show striking similarities with the human speech production network. However, despite increasing findings also in birds and more recently in rodents, the extent to which the primate vocal cortical network model generalizes to other non-primate mammals remains unclear. Especially, no domestic species has yet been proposed to investigate vocal brain activity using electrophysiological approaches. NEW METHOD In the present study, we introduce a novel experimental paradigm to identify the cortical dynamics underlying vocal production in behaving minipigs. A key problem to chronically implant cortical probes in pigs is the presence and growth of frontal sinuses extending caudally to the parietal bone and preventing safe access to neural structures with conventional craniotomy in adult animals. RESULTS Here we first show that implantations of soft ECoG grids can be done safely using conventional craniotomy in minipigs younger than 5 months, a period when sinuses are not yet well developed. Using wireless recordings in behaving animals, we further show activation of the motor and premotor cortex around the onset of vocal production of grunts, the most common vocalization of pigs. CONCLUSION These results suggest that minipigs, which are very loquacious and social animals, can be a good experimental large animal model to study the cortical bases of vocal production.
Collapse
Affiliation(s)
- Marie Palma
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Mehrdad Khoshnevis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Lion
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Cyril Zenga
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Samy Kefs
- CHU Grenoble Alpes, Clinique Universitaire de Cancérologie-Radiothérapie, 38000 Grenoble, France
| | - Florian Fallegger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Giuseppe Schiavone
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Isabelle Gabelle Flandin
- CHU Grenoble Alpes, Clinique Universitaire de Cancérologie-Radiothérapie, 38000 Grenoble, France
| | - Stéphanie Lacour
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Blaise Yvert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
3
|
Baluchová S, Brycht M, Taylor A, Mortet V, Krůšek J, Dittert I, Sedláková S, Klimša L, Kopeček J, Schwarzová-Pecková K. Enhancing electroanalytical performance of porous boron-doped diamond electrodes by increasing thickness for dopamine detection. Anal Chim Acta 2021; 1182:338949. [PMID: 34602205 DOI: 10.1016/j.aca.2021.338949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Novel porous boron-doped diamond (BDDporous)-based materials have attracted lots of research interest due to their enhanced detection ability and biocompatibility, favouring them for use in neuroscience. This study reports on morphological, spectral, and electrochemical characterisation of three BDDporous electrodes of different thickness given by a number of deposited layers (2, 3 and 5). These were prepared using microwave plasma-enhanced chemical vapour deposition on SiO2 nanofiber-based scaffolds. Further, the effect of number of layers and poly-l-lysine coating, commonly employed in neuron cultivation experiments, on sensing properties of the neurotransmitter dopamine in a pH 7.4 phosphate buffer media was investigated. The boron doping level of ∼2 × 1021 atoms cm-3 and increased content of non-diamond (sp2) carbon in electrodes with more layers was evaluated by Raman spectroscopy. Cyclic voltammetric experiments revealed reduced working potential windows (from 2.4 V to 2.2 V), higher double-layer capacitance values (from 405 μF cm-2 to 1060 μF cm-2), enhanced rates of electron transfer kinetics and larger effective surface areas (from 5.04 mm2 to 7.72 mm2), when the number of porous layers increases. For dopamine, a significant boost in analytical performance was recognized with increasing number of layers using square-wave voltammetry: the highest sensitivity of 574.1 μA μmol-1 L was achieved on a BDDporous electrode with five layers and dropped to 35.9 μA μmol-1 L when the number of layers decreased to two. Consequently, the lowest detection limit of 0.20 μmol L-1 was obtained on a BDDporous electrode with five layers. Moreover, on porous electrodes, enhanced selectivity for dopamine detection in the presence of ascorbic acid and uric acid was demonstrated. The application of poly-l-lysine coating on porous electrode surface resulted in a decrease in dopamine peak currents by 17% and 60% for modification times of 1 h and 15 h, respectively. Hence, both examined parameters, the number of deposited porous layers and the presence of poly-l-lysine coating, were proved to considerably affect the characteristics and performance of BDDporous electrodes.
Collapse
Affiliation(s)
- Simona Baluchová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic; FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Mariola Brycht
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403, Łódź, Poland
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Vincent Mortet
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná Sq. 3105, 272 01, Kladno, Czech Republic
| | - Jan Krůšek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ivan Dittert
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Silvia Sedláková
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ladislav Klimša
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Jaromír Kopeček
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
4
|
Seaton BT, Heien ML. Biocompatible reference electrodes to enhance chronic electrochemical signal fidelity in vivo. Anal Bioanal Chem 2021; 413:6689-6701. [PMID: 34595560 DOI: 10.1007/s00216-021-03640-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
In vivo electrochemistry is a vital tool of neuroscience that allows for the detection, identification, and quantification of neurotransmitters, their metabolites, and other important analytes. One important goal of in vivo electrochemistry is a better understanding of progressive neurological disorders (e.g., Parkinson's disease). A complete understanding of such disorders can only be achieved through a combination of acute (i.e., minutes to hours) and chronic (i.e., days or longer) experimentation. Chronic studies are more challenging because they require prolonged implantation of electrodes, which elicits an immune response, leading to glial encapsulation of the electrodes and altered electrode performance (i.e., biofouling). Biofouling leads to increased electrode impedance and reference electrode polarization, both of which diminish the selectivity and sensitivity of in vivo electrochemical measurements. The increased impedance factor has been successfully mitigated previously with the use of a counter electrode, but the challenge of reference electrode polarization remains. The commonly used Ag/AgCl reference electrode lacks the long-term potential stability in vivo required for chronic measurements. In addition, the cytotoxicity of Ag/AgCl adversely affects animal experimentation and prohibits implantation in humans, hindering translational research progress. Thus, a move toward biocompatible reference electrodes with superior chronic potential stability is necessary. Two qualifying materials, iridium oxide and boron-doped diamond, are introduced and discussed in terms of their electrochemical properties, biocompatibilities, fabrication methods, and applications. In vivo electrochemistry continues to advance toward more chronic experimentation in both animal models and humans, necessitating the utilization of biocompatible reference electrodes that should provide superior potential stability and allow for unprecedented chronic signal fidelity when used with a counter electrode for impedance mitigation.
Collapse
Affiliation(s)
- Blake T Seaton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael L Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Fong JSL, Booth MA, Rifai A, Fox K, Gelmi A. Diamond in the Rough: Toward Improved Materials for the Bone-Implant Interface. Adv Healthc Mater 2021; 10:e2100007. [PMID: 34170623 DOI: 10.1002/adhm.202100007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/17/2021] [Indexed: 01/16/2023]
Abstract
The ability of an orthopedic implant to integrate successfully with the surrounding bone tissue is imperative for optimal patient outcomes. Here, the recent advances and future prospects for diamond-based coatings of conventional osteo-implant materials (primarily titanium) are explored. The ability of these diamond coatings to enhance integration into existing bone, improved implant mechanical properties, facilitate surface chemical functionalization, and provide anti-microbial properties are discussed in context of orthopedic implants. These diamond-based materials may have the additional benefit of providing an osteo-inductive effect, enabling better integration into existing bone via stem cell recruitment and bone regeneration. Current and timely research is highlighted to support the discussion and suggestions in further improving implant integration via an osseoinductive effect from the diamond composite materials.
Collapse
Affiliation(s)
- Jessica S L Fong
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Marsilea A Booth
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Aaqil Rifai
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
- School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Kate Fox
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Amy Gelmi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
6
|
Mani N, Rifai A, Houshyar S, Booth MA, Fox K. Diamond in medical devices and sensors: An overview of diamond surfaces. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nour Mani
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Aaqil Rifai
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Shadi Houshyar
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| | | | - Kate Fox
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
7
|
Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5659682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conducting polymer-based composites have recently becoming popular in both academic research and industrial practices due to their high conductivity, ease of process, and tunable electrical properties. The multifunctional conducting polymer-based composites demonstrated great application potential for in vivo therapeutics and implantable electronics, including drug delivery, neural interfacing, and minimally invasive electronics. In this review article, the state-of-the-art conducting polymer-based composites in the mentioned biological fields are discussed and summarized. The recent progress on the synthesis, structure, properties, and application of the conducting polymer-based composites is presented, aimed at revealing the structure-property relationship and the corresponding functional applications of the conducting polymer-based composites. Furthermore, key issues and challenges regarding the implantation performance of these composites are highlighted in this paper.
Collapse
|