1
|
Baker C, Willis A, Milestone W, Baker M, Garner AL, Joshi RP. Numerical assessments of geometry, proximity and multi-electrode effects on electroporation in mitochondria and the endoplasmic reticulum to nanosecond electric pulses. Sci Rep 2024; 14:23854. [PMID: 39394381 PMCID: PMC11470013 DOI: 10.1038/s41598-024-74659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Most simulations of electric field driven bioeffects have considered spherical cellular geometries or probed symmetrical structures for simplicity. This work assesses cellular transmembrane potential build-up and electroporation in a Jurkat cell that includes the endoplasmic reticulum (ER) and mitochondria, both of which have complex shapes, in response to external nanosecond electric pulses. The simulations are based on a time-domain nodal analysis that incorporates membrane poration utilizing the Smoluchowski model with angular-dependent changes in membrane conductivity. Consistent with prior experimental reports, the simulations show that the ER requires the largest electric field for electroporation, while the inner mitochondrial membrane (IMM) is the easiest membrane to porate. Our results suggest that the experimentally observed increase in intracellular calcium could be due to a calcium induced calcium release (CICR) process that is initiated by outer cell membrane breakdown. Repeated pulsing and/or using multiple electrodes are shown to create a stronger poration. The role of mutual coupling, screening, and proximity effects in bringing about electric field modifications is also probed. Finally, while including greater geometric details might refine predictions, the qualitative trends are expected to remain.
Collapse
Affiliation(s)
- C Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A Willis
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - W Milestone
- Nanohmics, Inc, 6201 E Oltorf St, Austin, TX, 78717, USA
| | - M Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Lekešytė B, Mickevičiūtė E, Malakauskaitė P, Szewczyk A, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Želvys A, German N, Ramanavičienė A, Kulbacka J, Novickij J, Novickij V. Application of Gold Nanoparticles for Improvement of Electroporation-Assisted Drug Delivery and Bleomycin Electrochemotherapy. Pharmaceutics 2024; 16:1278. [PMID: 39458609 PMCID: PMC11510895 DOI: 10.3390/pharmaceutics16101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Electrochemotherapy (ECT) is a safe and efficient method of targeted drug delivery using pulsed electric fields (PEF), one that is based on the phenomenon of electroporation. However, the problems of electric field homogeneity within a tumor can cause a diminishing of the treatment efficacy, resulting only in partial response to the procedure. This work used gold nano-particles for electric field amplification, introducing the capability to improve available elec-trochemotherapy methods and solve problems associated with field non-homogeneity. Methods: We characterized the potential use of gold nanoparticles of 13 nm diameter (AuNPs: 13 nm) in combination with microsecond (0.6-1.5 kV/cm × 100 μs × 8 (1 Hz)) and nanosecond (6 kV/cm × 300-700 ns × 100 (1, 10, 100 kHz and 1 MHz)) electric field pulses. Finally, we tested the most prominent protocols (microsecond and nanosecond) in the context of bleomycin-based electrochemotherapy (4T1 mammary cancer cell line). Results: In the nano-pulse range, the synergistic effects (improved permeabilization and electrotransfer) were profound, with increased pulse burst frequency. Addi-tionally, AuNPs not only reduced the permeabilization thresholds but also affected pore resealing. It was shown that a saturated cytotoxic response with AuNPs can be triggered at significantly lower electric fields and that the AuNPs themselves are non-toxic for the cells either separately or in combination with bleomycin. Conclusions: The used electric fields are considered sub-threshold and/or not applicable for electrochemotherapy, however, when combined with AuNPs results in successful ECT, indicating the methodology's prospective applicability as an anticancer treatment method.
Collapse
Affiliation(s)
- Barbora Lekešytė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Eglė Mickevičiūtė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Paulina Malakauskaitė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Anna Szewczyk
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
| | - Almira Ramanavičienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
3
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
4
|
Ma C, Zhang M, Teng F, Zheng W, Mi Y. Preliminary Exploration of the Biophysical Mechanisms of Pulsed Magnetic Field- Induced Cell Permeabilization. IEEE Trans Nanobioscience 2024; 23:482-490. [PMID: 38625761 DOI: 10.1109/tnb.2024.3385413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Pulsed magnetic field treatment can enhance cell membrane permeability, allowing large molecular substances that normally cannot pass through the cell membrane to enter the cell. This research holds significant prospects for biomedical applications. However, the mechanism underlying pulsed magnetic field-induced cell permeabilization remains unclear, impeding further progress in research related to pulsed magnetic field. Currently, hypotheses about the mechanism are struggling to explain experimental results. Therefore, this study developed a parameter-adjustable pulsed magnetic field generator and designed experiments. Starting from the widely accepted hypothesis of "induced electric fields by pulsed magnetic field," we conducted a preliminary exploration of the biophysical mechanisms underlying pulsed magnetic field-induced cell permeabilization. Finally, we have arrived at an intriguing conclusion: under the current technical parameters, the impact of the pulsed magnetic field itself is the primary factor influencing changes in cell membrane permeability, rather than the induced electric field. This conclusion holds significant implications for understanding the biophysical mechanisms behind pulsed magnetic field therapy and its potential biomedical applications.
Collapse
|
5
|
Qian K, Zhong Z. Research frontiers of electroporation-based applications in cancer treatment: a bibliometric analysis. BIOMED ENG-BIOMED TE 2023; 68:445-456. [PMID: 37185096 DOI: 10.1515/bmt-2023-0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Electroporation, the breakdown of the biomembrane induced by external electric fields, has increasingly become a research hotspot for its promising related methods in various kinds of cancers. CONTENT In this article, we utilized CiteSpace 6.1.R2 to perform a bibliometric analysis on the research foundation and frontier of electroporation-based applications in cancer therapy. A total of 3,966 bibliographic records were retrieved from the Web of Science Core Collection for the bibliometric analysis. Sersa G. and Mir L. M. are the most indispensable researchers in this field, and the University of Ljubljana of Slovenia is a prominent institution. By analyzing references and keywords, we found that, with a lower recurrence rate, fewer severe adverse events, and a higher success rate, irreversible electroporation, gene electrotransfer, and electrochemotherapy are the three main research directions that may influence the future treatment protocol of cancers. SUMMARY This article visualized relevant data to synthesize scientific research on electroporation-based cancer therapy, providing helpful suggestions for further investigations on electroporation. OUTLOOK Although electroporation-based technologies have been proven as promising tools for cancer treatment, its radical mechanism is still opaque and their commercialization and universalization need further efforts from peers.
Collapse
Affiliation(s)
- Kun Qian
- Department of High-voltage and Insulation, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Zilong Zhong
- Research Institute of Foreign Languages, Beijing Foreign Studies University, Beijing, China
| |
Collapse
|
6
|
Hartard M, Fenneni MA, Scharla S, Hartard C, Hartard D, Mueller S, Botta Mendez G, Ben Saad H. Electromagnetic Induction for Treatment of Unspecific Back Pain: A Prospective Randomized Sham-Controlled Clinical Trial. J Rehabil Med 2023; 55:jrm00389. [PMID: 37115201 PMCID: PMC10166141 DOI: 10.2340/jrm.v55.3487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE To evaluate the effects of high-energy pulsed electromagnetic fields on unspecific back pain. METHODS A prospective, randomized, sham-controlled clinical trial with repeated measurements was performed. The study included 5 visits (V0 to V4) with 3 interventions during V1, V2 and V3. Sixty-one patients aged between 18 and 80 years with unspecific back pain (acute inflammatory diseases and specific causes were reasons for exclusion) were included. The treatment group (n = 31) received 1-2 pulses/s, with an intensity of 50 mT, and an electric field strength of at least 20 V/m on 3 consecutive weekdays for 10 min each time. The control group (n = 30) received a comparable sham therapy. Pain intensity (visual analogue scale), local oxyhaemoglobin saturation, heart rate, blood pressure, and perfusion index were evaluated before (b) and after (a) V1 and V3 interventions. Change in visual analogue scale for V1 (ChangeV1a-b) and V3 (ChangeV3a-b), and ChangeData between V3a and V1b (ChangeV3a-V1b) for the remaining data were calculated (results were mean (standard deviation) (95% confidence interval; 95% CI)). RESULTS Concerning the visual analogue scale: (i) compared with the control group, the treatment group had higher ChangeV1a-b (-1.25 (1.76) (95% CI -1.91 to -0.59) vs -2.69 (1.74) (95% CI -3.33 to -2.06), respectively), and comparable Change V3a-b (-0.86 (1.34) (95% CI -1.36 to -0.36) vs -1.37 (1.03) (95% CI -1.75 to 0.99), respectively); and (ii) there was a significant marked decrease in Change V3a-1b in the treatment group compared with the control group (-5.15 (1.56) (95% CI -5.72 to -4.57) vs -2.58 (1.68) (95% CI -3.21 to -1.96), p = 0.001, respectively). There was no significant ChangeV3a-V1b in local oxyhaemoglobin saturation, heart rate, blood pressure or perfusion index between the 2 groups and for the same group (before vs after). CONCLUSION Non-thermal, non-invasive electromagnetic induction therapy had a significant and rapid influence on unspecific back pain in the treatment group.
Collapse
Affiliation(s)
| | - Mohamed Amine Fenneni
- Center for Diagnostic and Health, Munich, Germany; University of Sousse. Faculty of Medicine of Sousse, Laboratory of Physiology, Sousse, Tunisia
| | - Stephan Scharla
- Ludwig-Maximilians University, Faculty of Medicine, Munich, Germany; Practice for Internal Medicine and Endocrinology, Bad Reichenhall, Germany
| | | | | | | | | | - Helmi Ben Saad
- University of Sousse. Faculty of Medicine of Sousse, Laboratory of Physiology, Sousse, Tunisia; Laboratory of Physiology and Functional Explorations; Heart Failure (LR12SP09) Research Laboratory, Farhat Hached Hospital, Sousse, Tunisia.
| |
Collapse
|
7
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Želvys A, Zinkevičienė A, Žalnėravičius R, Malyško-Ptašinskė V, Nemeikaitė-Čenienė A, Kašėta V, German N, Novickij J, Ramanavičienė A, Kulbacka J, Novickij V. Improving NonViral Gene Delivery Using MHz Bursts of Nanosecond Pulses and Gold Nanoparticles for Electric Field Amplification. Pharmaceutics 2023; 15:1178. [PMID: 37111663 PMCID: PMC10146442 DOI: 10.3390/pharmaceutics15041178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Gene delivery by the pulsed electric field is a promising alternative technology for nonviral transfection; however, the application of short pulses (i.e., nanosecond) is extremely limited. In this work, we aimed to show the capability to improve gene delivery using MHz frequency bursts of nanosecond pulses and characterize the potential use of gold nanoparticles (AuNPs: 9, 13, 14, and 22 nm) in this context. We have used bursts of MHz pulses 3/5/7 kV/cm × 300 ns × 100 and compared the efficacy of the parametric protocols to conventional microsecond protocols (100 µs × 8, 1 Hz) separately and in combination with nanoparticles. Furthermore, the effects of pulses and AuNPs on the generation of reactive oxygen species (ROS) were analyzed. It was shown that gene delivery using microsecond protocols could be significantly improved with AuNPs; however, the efficacy is strongly dependent on the surface charge of AuNPs and their size. The capability of local field amplification using AuNPs was also confirmed by finite element method simulation. Finally, it was shown that AuNPs are not effective with nanosecond protocols. However, MHz protocols are still competitive in the context of gene delivery, resulting in low ROS generation, preserved viability, and easier procedure to trigger comparable efficacy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Rokas Žalnėravičius
- State Research Institute Center for Physical Science and Technology, 02300 Vilnius, Lithuania;
| | | | - Aušra Nemeikaitė-Čenienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| | - Almira Ramanavičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| |
Collapse
|
8
|
Li C, Xiao C, Zhan L, Zhang Z, Xing J, Zhai J, Zhou Z, Tan G, Piao J, Zhou Y, Qi S, Wang Z, Yu P, Ning C. Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization. Bioact Mater 2022; 18:399-408. [PMID: 35415302 PMCID: PMC8965767 DOI: 10.1016/j.bioactmat.2022.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Pathological angiogenesis frequently occurs in tumor tissue, limiting the efficiency of chemotherapeutic drug delivery and accelerating tumor progression. However, traditional vascular normalization strategies are not fully effective and limited by the development of resistance. Herein, inspired by the intervention of endogenous bioelectricity in vessel formation, we propose a wireless electrical stimulation therapeutic strategy, capable of breaking bioelectric homeostasis within cells, to achieve tumor vascular normalization. Polarized barium titanate nanoparticles with high mechano-electrical conversion performance were developed, which could generate pulsed open-circuit voltage under low-intensity pulsed ultrasound. We demonstrated that wireless electrical stimulation significantly inhibited endothelial cell migration and differentiation in vitro. Interestingly, we found that the angiogenesis-related eNOS/NO pathway was inhibited, which could be attributed to the destruction of the intracellular calcium ion gradient by wireless electrical stimulation. In vivo tumor-bearing mouse model indicated that wireless electrical stimulation normalized tumor vasculature by optimizing vascular structure, enhancing blood perfusion, reducing vascular leakage, and restoring local oxygenation. Ultimately, the anti-tumor efficacy of combination treatment was 1.8 times that of the single chemotherapeutic drug doxorubicin group. This work provides a wireless electrical stimulation strategy based on the mechano-electrical conversion performance of piezoelectric nanoparticles, which is expected to achieve safe and effective clinical adjuvant treatment of malignant tumors. Wireless electrical stimulation was proposed for tumor vascular normalization. Polarized ferroelectric nanoparticles were developed for wireless stimulation. Wireless stimulation inhibited endothelial cell migration and differentiation. The intracellular Ca2+ gradient and eNOS/NO pathway of cells were disturbed. In vivo vascular normalization and anti-tumor efficacy were significantly enhanced.
Collapse
|
9
|
Simulation study of cell transmembrane potential and electroporation induced by time-varying magnetic fields. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kranjc M, Dermol-Černe J, Potočnik T, Novickij V, Miklavčič D. High-Intensity Pulsed Electromagnetic Field-Mediated Gene Electrotransfection In Vitro. Int J Mol Sci 2022; 23:ijms23179543. [PMID: 36076938 PMCID: PMC9455820 DOI: 10.3390/ijms23179543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high-intensity pulsed electromagnetic field (HI-PEMF) is a non-invasive and non-contact delivery method and may, as such, have an advantage over gene electrotransfer mediated by conventional electroporation using contact electrodes. Due to the limited number of in vitro studies in the field of gene electrotransfection by HI-PEMF, we designed experiments to investigate and demonstrate the feasibility of such a technique for the non-viral delivery of genetic material into cells in vitro. We first showed that HI-PEMF causes DNA adsorption to the membrane, a generally accepted prerequisite step for successful gene electrotransfection. We also showed that HI-PEMF can induce gene electrotransfection as the application of HI-PEMF increased the percentage of GFP-positive cells for two different combinations of pDNA size and concentration. Furthermore, by measuring the uptake of larger molecules, i.e., fluorescently labelled dextrans of three different sizes, we showed endocytosis to be a possible mechanism for introducing large molecules into cells by HI-PEMF.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
11
|
High-Intensity Low Frequency Pulsed Electromagnetic Fields Treatment Stimulates Fin Regeneration in Adult Zebrafish—A Preliminary Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low-Intensity electromagnetic fields (LI-PEMFs) are known to induce a trophic stimulus on bone tissue and therefore have been largely used for the treatment of several musculoskeletal disorders. High intensity (HI) PEMFs add interesting features to bio-stimulation such as electroporation, a phenomenon characterized by transient increased cell permeabilization to molecules, and diamagnetism, a water-repulsive effect based on the diamagnetic properties of water and transmembrane ions gradients. Despite the rapid evolution of technology, the biological mechanisms underlying it are still poorly understood. In order to evaluate the effectiveness of this particular stimulation, HI LF-PEMFs were used to stimulate the caudal fin rays of adult zebrafish. Actually, the zebrafish fin regeneration is a simple, well understood, and widely adopted model for studying bone regeneration. A controlled amputation fin experiment was then conducted. Regenerated bone matrix of fin rays was dyed with calcein and then analysed under fluorescence microscopy. Both the length and the area of regenerated fin’s rays treated with HI LF-PEMFs resulted significantly increased when compared with non-treated.
Collapse
|
12
|
Szlasa W, Janicka N, Sauer N, Michel O, Nowak B, Saczko J, Kulbacka J. Chemotherapy and Physical Therapeutics Modulate Antigens on Cancer Cells. Front Immunol 2022; 13:889950. [PMID: 35874714 PMCID: PMC9299262 DOI: 10.3389/fimmu.2022.889950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells possess specific properties, such as multidrug resistance or unlimited proliferation potential, due to the presence of specific proteins on their cell membranes. The release of proliferation-related proteins from the membrane can evoke a loss of adaptive ability in cancer cells and thus enhance the effects of anticancer therapy. The upregulation of cancer-specific membrane antigens results in a better outcome of immunotherapy. Moreover, cytotoxic T-cells may also become more effective when stimulated ex-vivo toward the anticancer response. Therefore, the modulation of membrane proteins may serve as an interesting attempt in anticancer therapy. The presence of membrane antigens relies on various physical factors such as temperature, exposure to radiation, or drugs. Therefore, changing the tumor microenvironment conditions may lead to cancer cells becoming sensitized to subsequent therapy. This paper focuses on the therapeutic approaches modulating membrane antigens and enzymes in anticancer therapy. It aims to analyze the possible methods for modulating the antigens, such as pharmacological treatment, electric field treatment, photodynamic reaction, treatment with magnetic field or X-ray radiation. Besides, an overview of the effects of chemotherapy and immunotherapy on the immunophenotype of cancer cells is presented. Finally, the authors review the clinical trials that involved the modulation of cell immunophenotype in anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bernadetta Nowak
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Vejdani Afkham B, Shankayi Z, Bahrami F, Firoozabadi SM, Heydarheydari S, Mohammadi MT. Investigation of how stimulation intensity of rTMS affects magneto permeabilization of the Blood–Brain Barrier (BBB). Electromagn Biol Med 2022; 41:335-342. [DOI: 10.1080/15368378.2022.2095644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Behrouz Vejdani Afkham
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shankayi
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farideh Bahrami
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Sahel Heydarheydari
- Department of Medical Physics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Chiaramello E, Fiocchi S, Bonato M, Gallucci S, Benini M, Tognola G, Ravazzani P, Parazzini M. Gold nanoparticles as enablers of cell membrane permeabilization by time-varying magnetic field: influence of distance and geometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4723-4726. [PMID: 36086609 DOI: 10.1109/embc48229.2022.9871079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study is based on the quantification of the influence of the presence of gold nanoparticles (Au NPs), of their geometry and their distance from cell membrane during time-varying electromagnetic fields cell membrane permeabilization on the pores opening dynamics. Results showed that the combined use of Au NPs and time-varying magnetic field can improve significantly the permeabilization of cell membrane. The presence of Au NPs allowed to reach transmembrane potential values enabling the cell membrane permeabilization only when placed at very short distance, equal to 20 nm. Both geometry and variability of the positioning in proximity of the cell membrane showed a strong influence on the probability of enabling pores opening. Clinical Relevance- This study provides a better comprehension about the mechanisms, still not completely understood, underlying cell membrane permeabilization by combining Au NPs and time-varying magnetic fields.
Collapse
|
15
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
16
|
Lorenzo MF, Campelo SN, Arroyo JP, Aycock KN, Hinckley J, Arena CB, Rossmeisl JH, Davalos RV. An Investigation for Large Volume, Focal Blood-Brain Barrier Disruption with High-Frequency Pulsed Electric Fields. Pharmaceuticals (Basel) 2021; 14:1333. [PMID: 34959733 PMCID: PMC8715747 DOI: 10.3390/ph14121333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
The treatment of CNS disorders suffers from the inability to deliver large therapeutic agents to the brain parenchyma due to protection from the blood-brain barrier (BBB). Herein, we investigated high-frequency pulsed electric field (HF-PEF) therapy of various pulse widths and interphase delays for BBB disruption while selectively minimizing cell ablation. Eighteen male Fisher rats underwent craniectomy procedures and two blunt-tipped electrodes were advanced into the brain for pulsing. BBB disruption was verified with contrast T1W MRI and pathologically with Evans blue dye. High-frequency irreversible electroporation cell death of healthy rodent astrocytes was investigated in vitro using a collagen hydrogel tissue mimic. Numerical analysis was conducted to determine the electric fields in which BBB disruption and cell ablation occur. Differences between the BBB disruption and ablation thresholds for each waveform are as follows: 2-2-2 μs (1028 V/cm), 5-2-5 μs (721 V/cm), 10-1-10 μs (547 V/cm), 2-5-2 μs (1043 V/cm), and 5-5-5 μs (751 V/cm). These data suggest that HF-PEFs can be fine-tuned to modulate the extent of cell death while maximizing peri-ablative BBB disruption. Furthermore, numerical modeling elucidated the diffuse field gradients of a single-needle grounding pad configuration to favor large-volume BBB disruption, while the monopolar probe configuration is more amenable to ablation and reversible electroporation effects.
Collapse
Affiliation(s)
- Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Kenneth N. Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| |
Collapse
|
17
|
Chiaramello E, Fiocchi S, Bonato M, Gallucci S, Benini M, Tognola G, Ravazzani P, Parazzini M. Contactless Cell Permeabilization by Time-Varying Magnetic fields: Modelling Transmembrane Potential and Mechanical Stress in in- vitro Experimental Set-Up. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4303-4305. [PMID: 34892173 DOI: 10.1109/embc46164.2021.9629570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The feasibility of using time-varying magnetic field as a contactless cells permeabilization method was demonstrated by experimental results, but the underlying mechanism is still poorly understood. In this study a numerical analysis of the transmembrane potential (TMP) at cell membranes during permeabilization by time-varying magnetic fields was proposed, and a first quantification of mechanical stress induced by the magnetic and electric fields and hypothesized to play an important role in the permeabilization mechanism was carried out. TMP values induced by typical in-vitro experimental conditions were far below the values needed for membrane permeabilization, with a strong dependence on distance of the cell from the coil. The preliminary assessment of the mechanical pressure and potential deformation of cells showed that stress values evaluated in conditions in which TMP values were too low to cause membrane permeabilization were comparable to those known to influence the pore opening mechanisms.Clinical Relevance- Results represent a significant step towards a better comprehension of the mechanism underlying cell membrane permeabilization by time-varying magnetic fields.
Collapse
|
18
|
Mi Y, Dai L, Xu N, Zheng W, Ma C, Chen W, Zhang Q. Viability inhibition of A375 melanoma cells in vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. NANOTECHNOLOGY 2021; 32:385101. [PMID: 34144549 DOI: 10.1088/1361-6528/ac0caf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Poor efficacy and low electrical safety are issues in the treatment of tumours with pulsed magnetic fields (PMFs). Based on the cumulative effect of high-frequency pulses and the enhanced perforation effect of targeted nanoparticles, this article proposes for the first time a new method that combines high-frequency nanosecond-pulsed magnetic fields (nsPMFs) with folic acid-superparamagnetic iron oxide nanoparticles (SPIONs-FA) to kill tumour cells. After determining the safe concentration of the targeted iron oxide nanoparticles, CCK-8 reagent was used to detect the changes in cell viability after utilising the combined method. After that, PI macromolecular dyes were used to stain the cells. Then, the state of the cell membrane was observed by scanning electron microscopy, and other methods were applied to study the cell membrane permeability changes after the combined treatment of the cells. It was finally confirmed that the high-frequency PMF can significantly reduce cell viability through the cumulative effect. In addition, the targeted iron oxide nanoparticles can reduce the magnetic field amplitude and the number of pulses required for the high-frequency PMF to kill tumour cellsin vitrothrough magnetoporation. The objective of this research is to improve the electrical safety of the PMF with the use of nsPMFs for the safe, efficient and low-intensity treatment of tumours.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lujian Dai
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenjuan Chen
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qin Zhang
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
19
|
Cell transmembrane potential in contactless permeabilization by time-varying magnetic fields. Comput Biol Med 2021; 135:104587. [PMID: 34171642 DOI: 10.1016/j.compbiomed.2021.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although experimental results proved the feasibility of using time-varying magnetic field as a contactless cells permeabilization method, the underlying mechanism is still poorly understood. In this study a numerical analysis of the time-dependent transmembrane potential (TMP) at cell membranes during permeabilization by time-varying magnetic fields was proposed, and a first quantification of mechanical stress induced by the magnetic and electric fields, hypothesized to play an important role in the permeabilization mechanism, was carried out. METHODS Starting from the simulation of real in vitro experimental conditions, the analysis was widened quantifying the influence of pulse frequency, cell dimension and distance of the cell from the magnetic field source. The mechanical pressure on cell membrane due to the interaction between free charges and induced electric field and due to the gradient of the magnetic field was quantified in all those conditions in which the TMP values were not high enough to cause membrane permeabilization. RESULTS TMP values induced by typical in-vitro experimental conditions were far below the values needed for membrane permeabilization, with a strong dependence on pulse frequency and distance of the cell from the coil. CONCLUSION The preliminary assessment of the mechanical pressure on cell membrane showed that stress values evaluated in conditions in which TMP values were too low to cause membrane permeabilization were comparable to those known to influence the pores opening mechanisms. Results represent a significant step towards a better comprehension of the mechanism underlying cell membrane permeabilization by time-varying magnetic fields.
Collapse
|
20
|
Heydarheydari S, Firoozabadi SM, Mirnajafi-Zadeh J, Shankayi Z. Pulsed high magnetic field-induced reversible blood-brain barrier permeability to enhance brain-targeted drug delivery. Electromagn Biol Med 2021; 40:361-374. [PMID: 34043463 DOI: 10.1080/15368378.2021.1925905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study aimed to select an effective Pulsed High Magnetic Field (PHMF) stimulation protocol that would induce the Blood-Brain Barrier's (BBB) reversible permeability to enhance brain-targeted drug delivery. PHMF was applied to the skull over the right hemisphere of 60 Wistar rats. The sham group contained other 10 rats that did not receive PHMF stimulation. The investigated parameters were repetition frequencies (0.25, 1, and 4 Hz as well as the effective low frequency combined with 10 Hz) and numbers of pulses in each train. Evans Blue Dye (EBD) uptake within the brain parenchyma was measured to select an effective PHMF stimulation protocol. BBB reversibility was evaluated by measuring EBD uptake and Gadobutrol retention, through MRI signal intensity enhancement, within brain parenchyma after exposure to the effective PHMF stimulation protocol at different time points including 0.5, 1, and 24 hours. The obtained results showed that the PHMF stimulation increased the BBB's reversible permeability; this increase was more significant for 28 pulses with 1 Hz frequency (P < .0001). Changes in EBD uptake and MRI signal intensity in the exposed side (right hemisphere) peaked within 0.5-1 hour and returned to normal levels 24 hours after exposure to the effective protocol of PHMF stimulation (28 pulses with 1 Hz frequency). The Contrast-Enhanced MRI (CE-MRI) signal intensity confirmed the changes in EBD concentration. PHMF stimulation can be used as an effective protocol for enhancing the permeability reversibly of BBB, hence considered a potential clinical approach to brain-targeted drug delivery.
Collapse
Affiliation(s)
- Sahel Heydarheydari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Firoozabadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,R&D Center, Pars Bioelectromagnetics Co, Modares Science and Technology Park, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- R&D Center, Pars Bioelectromagnetics Co, Modares Science and Technology Park, Tehran, Iran
| |
Collapse
|
21
|
Hu Q, Joshi RP. Continuum analysis to assess field enhancements for tailoring electroporation driven by monopolar or bipolar pulsing based on nonuniformly distributed nanoparticles. Phys Rev E 2021; 103:022402. [PMID: 33736030 DOI: 10.1103/physreve.103.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 11/07/2022]
Abstract
Recent reports indicate that nanoparticle (NP) clusters near cell membranes could enhance local electric fields, leading to heightened electroporation. This aspect is quantitatively analyzed through numerical simulations whereby time dependent transmembrane potentials are first obtained on the basis of a distributed circuit mode, and the results then used to calculate pore distributions from continuum Smoluchowski theory. For completeness, both monopolar and bipolar nanosecond-range pulse responses are presented and discussed. Our results show strong increases in TMP with the presence of multiple NP clusters and demonstrate that enhanced poration could be possible even over sites far away from the poles at the short pulsing regime. Furthermore, our results demonstrate that nonuniform distributions would work to enable poration at regions far away from the poles. The NP clusters could thus act as distributed electrodes. Our results were roughly in line with recent experimental observations.
Collapse
Affiliation(s)
- Q Hu
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
22
|
Novickij V, Stanevičienė R, Gruškienė R, Badokas K, Lukša J, Sereikaitė J, Mažeika K, Višniakov N, Novickij J, Servienė E. Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields. NANOMATERIALS 2021; 11:nano11020342. [PMID: 33573001 PMCID: PMC7911490 DOI: 10.3390/nano11020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Foodborne pathogens are frequently associated with risks and outbreaks of many diseases; therefore, food safety and processing remain a priority to control and minimize these risks. In this work, nisin-loaded magnetic nanoparticles were used and activated by alternating 10 and 125 mT (peak to peak) magnetic fields (AMFs) for biocontrol of bacteria Listeria innocua, a suitable model to study the inactivation of common foodborne pathogen L. monocytogenes. It was shown that L. innocua features high resistance to nisin-based bioactive nanoparticles, however, application of AMFs (15 and 30 min exposure) significantly potentiates the treatment resulting in considerable log reduction of viable cells. The morphological changes and the resulting cellular damage, which was induced by the synergistic treatment, was confirmed using scanning electron microscopy. The thermal effects were also estimated in the study. The results are useful for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. The proposed methodology is a contactless alternative to the currently established pulsed-electric field-based treatment in food processing.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
- Correspondence: (V.N.); (E.S.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
| | - Rūta Gruškienė
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Vilnius University, 10257 Vilnius, Lithuania;
| | - Juliana Lukša
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
| | - Jolanta Sereikaitė
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
| | - Kęstutis Mažeika
- Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Nikolaj Višniakov
- Faculty of Mechanics, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania;
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
- Correspondence: (V.N.); (E.S.)
| |
Collapse
|