1
|
Cheng L, Yang Y, Lin S, Su C, You M, Liu Y, He Q, Chen J, Lin Z, Hong G. Sensitive and quick electrochemiluminescence biosensor for the detection of reactive oxygen species in seminal plasma based on the valence regulation of gold nanoclusters. Anal Chim Acta 2024; 1330:343284. [PMID: 39489966 DOI: 10.1016/j.aca.2024.343284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Gold nanoclusters (AuNCs) obtained by electroreduction have excellent electrochemiluminescence (ECL) properties, and its ECL intensity is regulated by the valence state. In addition, their ECL signals can be rapidly quenched by reactive oxygen species (ROS). Based on this observation, a sensitive ROS biosensor was designed based on valence regulation of AuNCs. Excessive ROS in seminal plasma can lead to male infertility, and the short half-life and instability of ROS pose a challenge for their detection. Since valence regulation can be done quickly and is very sensitive, this ECL biosensor holds promise to address this issue. RESULTS The ECL mechanism of AuNCs and the quenching mechanism of AuNCs by ROS were explored, mainly because ROS change the valence state of AuNCs. The ECL signals of the biosensor have a linear relationship with logarithm of the target concentration in the range of 1.0 × 10-8 to 1.0 × 10-3 M and 1.0 × 10-3 to 1.0 × 10-1 M, with a detection limit of 0.75 × 10-10 M (S/N = 3). The biosensor enables rapid one-step detection of ROS and has the advantage of being stable and reusable. More notably, the results of 57 real samples showed that the biosensor can be used to accurately assess the concentration of seminal plasma ROS, guiding the monitoring of sperm quality and the diagnosis of male infertility. SIGNIFICANCE Compared with the traditional strategy of applying AuNCs only as a luminescent body, this strategy of regulating the valence state of AuNCs to achieve sensitive and rapid detection broadens the application of AuNCs in the field of analysis. Compared with other ROS detection strategies, the one-step immediate detection method effectively avoids the inaccuracy caused by the short half-life and natural dissipation of ROS, and is expected to improve the accuracy and efficiency of clinical diagnosis.
Collapse
Affiliation(s)
- Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Shaobin Lin
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Mingming You
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Yating Liu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Qingfei He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China.
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| |
Collapse
|
2
|
Fernández-García E, Merino P, González-Rodríguez N, Martínez L, Pozo MD, Prieto J, Blanco E, Santoro G, Quintana C, Petit-Domínguez MD, Casero E, Vázquez L, Martínez JI, Martín-Gago JA. Enhanced Electrocatalysis on Copper Nanostructures: Role of the Oxidation State in Sulfite Oxidation. ACS Catal 2024; 14:11522-11531. [PMID: 39114085 PMCID: PMC11302185 DOI: 10.1021/acscatal.3c05897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 08/10/2024]
Abstract
The influence of surface morphology and the oxidation state on the electrocatalytic activity of nanostructured electrodes is well recognized, yet disentangling their individual roles in specific reactions remains challenging. Here, we investigated the electrooxidation of sulfite ions in an alkaline environment using cyclic voltammetry on copper oxide nanostructured electrodes with different oxidation states and morphologies but with similar active areas. To this aim, we synthesized nanostructured Cu films made of nanoparticles or nanorods on top of glassy carbon electrodes. Our findings showed an enhanced sensitivity and a lower detection threshold when utilizing Cu(I) over Cu(II). Density functional theory-based thermochemical analysis revealed the underlying oxidation mechanism, indicating that while the energy gain associated with the process is comparable for both oxide surfaces, the desorption energy barrier for the resulting sulfate molecules is three times higher on Cu(II). This becomes the limiting step of the reaction kinetics and diminishes the overall electrooxidation efficiency. Our proposed mechanism relies on the tautomerization of hydroxyl groups confined on the surface of Cu-based electrodes. This mechanism might be applicable to electrochemical reactions involving other sulfur compounds that hold technological significance.
Collapse
Affiliation(s)
- Esperanza Fernández-García
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Pablo Merino
- Instituto
de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain
| | - Nerea González-Rodríguez
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Lidia Martínez
- Instituto
de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain
| | - María del Pozo
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Javier Prieto
- Instituto
de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain
| | - Elías Blanco
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Gonzalo Santoro
- Instituto
de Estructura de la Materia (IEM), CSIC, c/Serrano 121, Madrid 28006, Spain
| | - Carmen Quintana
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - María Dolores Petit-Domínguez
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Elena Casero
- Departamento
de Química Analítica y Análisis Instrumental,
Facultad de Ciencias, c/Francisco Tomás y Valiente, Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Luis Vázquez
- Instituto
de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain
| | - José I. Martínez
- Instituto
de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain
| | - José A. Martín-Gago
- Instituto
de Ciencia de Materiales de Madrid ICMM (CSIC), Madrid E-28049, Spain
| |
Collapse
|
3
|
Pérez E, Vázquez L, Quintana C, Petit-Domínguez MD, Casero E, Blanco E. Synergistic effect of manganese (II) phosphate & diamond nanoparticles in electrochemical sensors for reactive oxygen species determination in seminal plasma. Anal Chim Acta 2023; 1264:341301. [PMID: 37230730 DOI: 10.1016/j.aca.2023.341301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
In this work, we explore the ability of manganese (II) phosphate (MnP) as a catalytic element for the determination of reactive oxygen species (ROS) in seminal plasma, when MnP is employed as modifier of a glassy carbon electrode. The electrochemical response of the manganese (II) phosphate-modified electrode shows a wave at around +0.65 V due to the oxidation of Mn2+ to MnO2+, which is clearly enhanced after addition of superoxide, the molecule considered as the mother of ROS. Once proved the suitability of manganese (II) phosphate as catalyst, we evaluate the effect of including a 0D (diamond nanoparticles) or a 2D (ReS2) nanomaterial in the sensor design. The system consisting of manganese (II) phosphate and diamond nanoparticles yielded the largest improvement of the response. The morphological characterization of the sensor surface was performed by scanning electron microscopy and atomic force microscopy, while cyclic and differential pulse voltammetry were employed for the electrochemical characterization of the sensor. After optimizing the sensor construction, calibration procedures by chronoamperometry were performed, leading to a linear relation between peak intensity and the superoxide concentration in the range of 1.1 10-4 M - 1.0 10-3 M with a limit of detection of 3.2 10-5 M. Seminal plasma samples were analysed by the standard addition method. Moreover, the analysis of samples fortified with superoxide at the μM level leads to recoveries of 95%.
Collapse
Affiliation(s)
- Eva Pérez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/ Sor Juana Inés de la Cruz Nº3, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elías Blanco
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Della Pelle F, Bukhari QUA, Alvarez Diduk R, Scroccarello A, Compagnone D, Merkoçi A. Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors. NANOSCALE 2023; 15:7164-7175. [PMID: 37009987 DOI: 10.1039/d2nr07157f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The production of 2D/2D heterostructures (HTs) with favorable electrochemical features is challenging, particularly for semiconductor transition metal dichalcogenides (TMDs). In this studies, we introduce a CO2 laser plotter-based technology for the realization of HT films comprising reduced graphene oxide (rGO) and 2D-TMDs (MoS2, WS2, MoSe2, and WSe2) produced via water phase exfoliation. The strategy relies on the Laser-Induced production of HeterosTructures (LIHTs), where after irradiation the nanomaterials exhibit changes in the morphological and chemical structure, becoming conductive easily transferable nanostructured films. The LIHTs were characterized in detail by SEM, XPS, Raman and electrochemical analysis. The laser treatment induces the conversion of GO into conductive highly exfoliated rGO decorated with homogeneously distributed small TMD/TM-oxide nanoflakes. The freestanding LIHT films obtained were employed to build self-contained sensors onto nitrocellulose, where the HT works both as a transducer and sensing surface. The proposed nitrocellulose-sensor manufacturing process is semi-automated and reproducible, multiple HT films may be produced in the same laser treatment and the stencil-printing allows customizable design. Excellent performance in the electroanalytical detection of different molecules such as dopamine (a neurotransmitter), catechin (a flavonol), and hydrogen peroxide was demonstrated, obtaining nanomolar limits of detection and satisfactory recovery rates in biological and agrifood samples, together with high fouling resistance. Considering the robust and rapid laser-induced production of HTs and the versatility of scribing desired patterns, the proposed approach appears as a disruptive technology for the development of electrochemical devices through sustainable and accessible strategies.
Collapse
Affiliation(s)
- Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Qurat Ul Ain Bukhari
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Ruslán Alvarez Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
5
|
Non-noble metal Bi/BiVO4 photoanode for surface plasmon resonance-induced photoelectrochemical biosensor of hydrogen peroxide detection. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zhang Y, Wei X, Gu Q, Zhang J, Ding Y, Xue L, Chen M, Wang J, Wu S, Yang X, Zhang S, Lei T, Wu Q. Cascade amplification based on PEI-functionalized metal–organic framework supported gold nanoparticles/nitrogen–doped graphene quantum dots for amperometric biosensing applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Thiangchanya A, Phonchai A, Limbut W. Micro-colloidal catalyst of palladium nanoparticles on polyaniline-coated carbon microspheres for a non-enzymatic hydrogen peroxide sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Ryzhkov NV, Nikolaev KG, Ivanov AS, Skorb EV. Infochemistry and the Future of Chemical Information Processing. Annu Rev Chem Biomol Eng 2021; 12:63-95. [PMID: 33909470 DOI: 10.1146/annurev-chembioeng-122120-023514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.
Collapse
Affiliation(s)
- Nikolay V Ryzhkov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| |
Collapse
|
9
|
Lu Z, Wu L, Dai X, Wang Y, Sun M, Zhou C, Du H, Rao H. Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: Highly sensitive electrochemical determination of hydrogen peroxide and glucose. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123774. [PMID: 33254785 DOI: 10.1016/j.jhazmat.2020.123774] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 05/20/2023]
Abstract
Polyimide-laser-engraved porous graphene (LEPG) are hopeful electrode modification materials for flexible electrochemical sensing based on its high-efficiency preparation and low cost. Herein, a flexible, multi-patterned, and miniaturized electrode was fabricated via a simple and novel direct laser engraving. 3D LEPG with porous network structure can selective decorated with Pt nanoparticles (Pt NPs) by in situ electrochemical depositions (Pt-LEPG) as sensitively H2O2 sensors with a wide range of linear (0.01-29 nM) and high sensitivity (575.75 μA mM-1 cm-2). Subsequently, a glucose biosensor was successfully constructed through immobilized glucose oxidases (GOD) onto Pt-LEPG electrode. New-designed GOD/Pt-LEPG glucose sensor exhibited a noteworthy lower limit of detection (0.3 μM, S/N = 3) and high sensitivity (241.82 μA mM-1 cm-2), as much a wide-range of linear (0.01-31.5 mM) at near-neutral pH conditions, enabling detect glucose in real human serum specimens with satisfactory results. Predictably, these outstanding performance sensors have great potential in terms of flexible and wearable electronics.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Lan Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Haijun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|