1
|
Fan P, Li Q, Zhang Z, Ni S, Jiang P, Sun S, Li L. A novel and universal dual-channel signal amplification aptasensing platform for ultrasensitive and rapid detection of cardiac biomarkers based on the mutual regulation of bimetallic organic framework and silver nanoclusters. Talanta 2025; 288:127745. [PMID: 39961249 DOI: 10.1016/j.talanta.2025.127745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Cardiac troponin I (cTnI) is a key biomarker for diagnosing myocardial infarction caused by myocardial injury. The accurate and rapid monitoring of ultralow levels of cTnI is crucial for early diagnosis and risk warning of myocardial injury. Herein, a novel dual-channel signal amplification aptasensor for cTnI detection was developed utilizing the mutual regulation of bimetallic organic framework (MOFs) and silver nanoclusters (AgNCs) with the assistance of catalytic hairpin assembly (CHA). Rationally designed triple-helix molecular switch (THMS) and two hairpin probes (HP1 and HP2) containing AgNCs and a guanine-rich DNA sequence could be adsorbed onto the surface of bimetallic Cu, Mo-MOFs, enhancing the catalytic activity and reducing the fluorescence signal. The target cTnI specifically binds to the aptamer in the THMS, releasing the signal transduction probe which triggers CHA to desorb HP1-AgNCs and HP2, thereby restoring the fluorescence and decreasing the catalytic activity as well as initiating cycling. This enables dual-channel fluorescence and colorimetric detection of cTnI. The linear fluorescence and colorimetric response ranges were 0.001-20 ng/mL with LOD of 0.48 pg/mL and 0.001-10 ng/mL with LOD of 0.69 pg/mL, respectively. The aptasensor significantly increases the detection sensitivity and reduces the time required for cTnI detection in human serum, with excellent anti-interference capability. Moreover, the aptasensor shows promise for the construction of universal dual-channel aptasensors for multiple targets by altering the aptamer in THMS.
Collapse
Affiliation(s)
- Pengfei Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Qianji Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhengduo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shanhong Ni
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Ping Jiang
- The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Shuhong Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
2
|
Ran C, Zhang JL, He X, Luo C, Zhang Q, Shen Y, Yin L. Recent development of gold nanochips in biosensing and biodiagnosis sensibilization strategies in vitro based on SPR, SERS and FRET optical properties. Talanta 2025; 282:126936. [PMID: 39362039 DOI: 10.1016/j.talanta.2024.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Gold nanomaterials have become attractive nanomaterials for biomedical research due to their unique physical and chemical properties, and nanochips are designed to manufacture high-quality substrates for loading gold nanoparticles (GNPs) to achieve specific and selective detection. By utilizing multiple optical properties of different gold nanostructures, the sensitivity, specificity, speed, contrast, resolution, and other performance of biosensing and biological diagnosis can be significantly improved. This paper summarized the sensitivity enhancement strategies of optical biosensing techniques based on the three main optical properties of gold nanomaterials: surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET). The aim is to comprehensively review the development direction of in vitro diagnostics (IVDs) from two aspects: detection strategies and modification of gold nanomaterials. In addition, some opportunities and challenges that gold-based IVDs may encounter at present or in the future are also mentioned in this paper. In summary, this paper can enlighten readers with feasible strategies for manufacturing potential gold-based nanobiosensors.
Collapse
Affiliation(s)
- Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Jin-Lin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China; Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Changyou Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Qingjie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Li G, Li S, Li X, He W, Tan X, Liang J, Zhou Z. A novel electrochemical aptasensor based on NrGO-H-Mn 3O 4 NPs integrated CRISPR/Cas12a system for ultrasensitive low-density lipoprotein determination. Mikrochim Acta 2024; 191:547. [PMID: 39162876 DOI: 10.1007/s00604-024-06628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Atherosclerosis cardiovascular disease (ASCVD) has become one of the leading death causes in humans. Low-density lipoprotein (LDL) is an important biomarker for assessing ASCVD risk level. Thus, monitoring LDL levels can be an important means for early diagnosis of ASCVD. Herein, a novel electrochemical aptasensor for determination LDL was designed based on nitrogen-doped reduced graphene oxide-hemin-manganese oxide nanoparticles (NrGO-H-Mn3O4 NPs) integrated with clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR/Cas12a) system. NrGO-H-Mn3O4 NPs not only have a large surface area and remarkable enhanced electrical conductivity but also the interconversion of different valence states of iron in hemin can provide an electrical signal. Nonspecific single-stranded DNA (ssDNA) was bound to NrGO-H-Mn3O4 NPs to form a signaling probe and was immobilized on the electrode surface. The CRISPR/Cas12a system has excellent trans-cleavage activity, which can be used to cleave ssDNA, thus detaching the NrGO-H-Mn3O4 NPs from the sensing interface and attenuating the electrical signal. Significant signal change triggered by the target was ultimately obtained, thus achieving sensitive detection of the LDL in range from 0.005 to 1000.0 nM with the detection limit of 0.005 nM. The proposed sensor exhibited good stability, selectivity, and stability and achieved reliable detection of LDL in serum samples, demonstrating its promising application prospects for the diagnostic application of LDL.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China.
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Shengnan Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Xinhao Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Wei He
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Xiaohong Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
4
|
Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. BIOSENSORS 2024; 14:367. [PMID: 39194596 DOI: 10.3390/bios14080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.
Collapse
Affiliation(s)
- Kai Hu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Weihong Yin
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Yunhan Bai
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Jiarui Zhang
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Academy of Edge Intelligence, Hangzhou City University, Hangzhou 310015, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Yudin Kharismasari C, Irkham, Zein MIHL, Hardianto A, Nur Zakiyyah S, Umar Ibrahim A, Ozsoz M, Wahyuni Hartati Y. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 2024; 155:108600. [PMID: 37956622 DOI: 10.1016/j.bioelechem.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Each organism has a unique sequence of nitrogenous bases in in the form of DNA or RNA which distinguish them from other organisms. This characteristic makes nucleic acid-based detection extremely selective and compare to other molecular techniques. In recent years, several nucleic acid-based detection technology methods have been developed, one of which is the electrochemical biosensor. Electrochemical biosensors are known to have high sensitivity and accuracy. In addition, the ease of miniaturization of this electrochemical technique has garnered interest from many researchers. On the other hand, the CRISPR/Cas12 method has been widely used in detecting nucleic acids due to its highly selective nature. The CRISPR/Cas12 method is also reported to increase the sensitivity of electrochemical biosensors through the utilization of modified electrodes. The electrodes can be modified according to detection needs so that the biosensor's performance can be improved. This review discusses the application of CRISPR/Cas12-based electrochemical biosensors, as well as various electrode modifications that have been successfully used to improve the performance of these biosensors in the clinical and food monitoring fields.
Collapse
Affiliation(s)
- Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey; Operational Research Centre in Healthcare, Near East University, Mersin 10, TRNC, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia.
| |
Collapse
|
6
|
Shrikrishna NS, Mahari S, Gandhi S. Sensing of trans-cleavage activity of CRISPR/Cas12a for detection of Salmonella. Int J Biol Macromol 2024; 258:128979. [PMID: 38154710 DOI: 10.1016/j.ijbiomac.2023.128979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Salmonella typhimurium (S. typhi) a predominant foodborne pathogen, significantly impacting global public health. Therefore, timely diagnosis is imperative to safeguard overall human health. To address this, we developed a novel CRISPR/Cas12a-mediated electrochemical detection system (biosensor) for targeting the SifA gene of S. typhi. To construct the biosensor, we utilized a screen-printed gold electrode (SPGE) as an electrochemical transducer and CRISPR/Cas12a for detection of SifA gene of S. typhi. The developed electrochemical biosensor exhibited an exceptional detection limit of 0.634 ± 0.029 pM, which was determined through differential pulse voltammetry (DPV) by utilizing a potentiostat. We compared the fabricated biosensor with gold standard RT-PCR and the visual detection limit of SifA was found to be 10 μM (in spiked buffer samples). The lower detection limit of fabricated biosensor provides an upper edge over the RT-PCR. Further, the fabricated biosensor also has the potential to serve as a rapid, stable, efficient, and early detection tool for S. typhi, offering promising advancements in diagnostic realms.
Collapse
Affiliation(s)
- Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
7
|
Dong J, Wu X, Hu Q, Sun C, Li J, Song P, Su Y, Zhou L. An immobilization-free electrochemical biosensor based on CRISPR/Cas13a and FAM-RNA-MB for simultaneous detection of multiple pathogens. Biosens Bioelectron 2023; 241:115673. [PMID: 37717422 DOI: 10.1016/j.bios.2023.115673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
To better respond to biosecurity issues, we need to build good technology and material reserves for pathogenic microorganism screening. Here, we designed an electrochemical/optical signal probe with a common fluorophore and an electrochemically active group, breaking the previous perception that the signal probe is composed of a fluorophore and a quenching group and realizing the response of three signals: electrochemistry, fluorescence, and direct observation. Then, we proposed a homogeneous electrochemical nucleic acid detection system based on CRISPR/Cas named "HELEN-CR" by integrating free electrochemical/optical signal probes and Cas13a cleavage, achieving a limit of detection of 1 pM within 25 min. To improve the detection sensitivity, we applied recombinase polymerase amplification to amplify the target nucleic acid, achieving a limit of detection of 30 zM within 45 min. Complemented by our self-developed multi-chamber microfluidic chip and portable electrochemical instrument, simultaneous detection of multiple pathogens can be achieved within 50 min, facilitating minimally trained personnel to obtain detection results quickly in a difficult environment. This study proposes a simple, scalable, and general idea and solution for the rapid detection of pathogenic microorganisms and biosecurity monitoring.
Collapse
Affiliation(s)
- Jinying Dong
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoya Wu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China; Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, China
| | - Chongsi Sun
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiahao Li
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Song
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Su
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Zhou
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China; Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, China.
| |
Collapse
|
8
|
Li X, Zhong J, Li H, Qiao Y, Mao X, Fan H, Zhong Y, Imani S, Zheng S, Li J. Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid. Front Mol Biosci 2023; 10:1260883. [PMID: 37808520 PMCID: PMC10552857 DOI: 10.3389/fmolb.2023.1260883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are widely used as gene editing tools in biology, microbiology, and other fields. CRISPR is composed of highly conserved repetitive sequences and spacer sequences in tandem. The spacer sequence has homology with foreign nucleic acids such as viruses and plasmids; Cas effector proteins have endonucleases, and become a hotspot in the field of molecular diagnosis because they recognize and cut specific DNA or RNA sequences. Researchers have developed many diagnostic platforms with high sensitivity, high specificity, and low cost by using Cas proteins (Cas9, Cas12, Cas13, Cas14, etc.) in combination with signal amplification and transformation technologies (fluorescence method, lateral flow technology, etc.), providing a new way for rapid detection of pathogen nucleic acid. This paper introduces the biological mechanism and classification of CRISPR-Cas technology, summarizes the existing rapid detection technology for pathogen nucleic acid based on the trans cleavage activity of Cas, describes its characteristics, functions, and application scenarios, and prospects the future application of this technology.
Collapse
Affiliation(s)
- Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yinbiao Qiao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yiwu Zhong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- The Organ Repair and Regeneration Medicine Institute of Hangzhou, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Xu H, Pan R, Huang W, Zhu X. Label-free dual-mode sensing platform based on target-regulated CRISPR-Cas12a activity for ochratoxin A in Morinda officinalis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4518-4523. [PMID: 37622284 DOI: 10.1039/d3ay01025b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Many traditional Chinese herbs are susceptible to ochratoxin A (OTA), a potent mycotoxin, which causes serious effects on the quality of the herb and on people's health. The development of methods to detect OTA is extremely important. Most methods for detecting OTA are based on a single-signal output mode, which might be easily influenced by complex environmental conditions. In this research, by taking advantage of the cleavage of DNA by target-induced CRISPR-Cas12a activity and the difference in electrostatic force of DNA to different charge electrochemiluminescent (ECL) and electrochemical (EC) probes, a biosensor is developed for the detection of OTA. First, the CRISPR-Cas12a system consists of a well-designed crRNA, its complementary strand (also as an aptamer for OTA), and Cas12a. Without the target, this CRISPR-Cas12a system is in the "activated stage", which digests hairpin DNA on the electrode, resulting in a weak ECL signal and strong current response. With the introduction of OTA bound with the aptamer, CRISPR-Cas12a activity is inhibited ("locked stage"). Thus, hairpin DNA remained intact on the electrode, resulting in recovery of the ECL signal and attenuation of the current intensity. As a result, this label-free dual-mode sensing platform realizes an assay for OTA in Morinda officinalis. This target-regulated CRISPR-Cas12a activity-sensing platform with dual-mode output not only provides high sensitivity (due to the CRISPR-Cas12a system), but also has good anti-interference ability against complex substrates (due to dual-mode output), and exhibits a broad range of prospects for application.
Collapse
Affiliation(s)
- Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China.
| | - Rui Pan
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China.
| | - Weihua Huang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China.
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
10
|
Ma J, Feng L, Li J, Zhu D, Wang L, Su S. Biological Recognition-Based Electrochemical Aptasensor for Point-of-Care Detection of cTnI. BIOSENSORS 2023; 13:746. [PMID: 37504144 PMCID: PMC10377036 DOI: 10.3390/bios13070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
As a "gold standard biomarker", cardiac troponin I (cTnI) is widely used to diagnose acute myocardial infarction (AMI). For an early clinical diagnosis of AMI, it is necessary to develop a facile, fast and on-site device for cTnI detection. According to this demand, a point-of-care electrochemical aptasensor was developed for cTnI detection by coupling the advantages of screen-printed carbon electrode (SPCE) with those of an aptamer. Thiol and methylene blue (MB) co-labelled aptamer (MB-Apt-SH) was assembled on the surface of hierarchical flower-like gold nanostructure (HFGNs)-decorated SPCE (SPCE-HFGNs) to recognize and analyze cTnI. In the presence of cTnI, the specific biological recognition reaction between cTnI and aptamer caused the decrease in electrochemical signal. Under the optimal condition, this designed aptasensor showed wide linear range (10 pg/mL-100 ng/mL) and low detection limit for (8.46 pg/mL) for cTnI detection with high selectivity and stability. More importantly, we used a mobile phone coupled with a simple APP to efficiently detect cTnI in 10 μL 100% human serum samples, proving that this aptasensor has a promising potential in point-of-care testing.
Collapse
Affiliation(s)
- Jianfeng Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lin Feng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
11
|
Zhou Z, Gao T, Zhao Y, Yang P, Cheng D, Yang H, Wang Y, Li X. Dual signal amplified electrochemical aptasensor based on PEI-functionalized GO and ROP for highly sensitive detection of cTnI. Bioelectrochemistry 2023; 151:108402. [PMID: 36841148 DOI: 10.1016/j.bioelechem.2023.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Cardiac troponin I (cTnI) is considered as the gold standard for the diagnosis of acute myocardial infarction (AMI) because of its excellent specificity and sensitivity. Herein, a novel aptasensor based on the dual signal amplification strategy of Polyethyleneimine functionalized Graphene oxide (GO) and ring-opening polymerization (ROP) for the first time was successfully constructed to achieve high sensitivity detection of cTnI. Briefly, cTnI-aptamer 1 (Apt1) was immobilized on the surface of gold electrode by self-assembly of Au-S bonds to specifically capture cTnI. After specific recognition of cTnI, Apt2 coated PEI-functionalized GO composites acted as macroinitiators for the subsequent ROP reaction. Next, α-amino acid-N-carboxylic acid anhydride ferrocene derivatives (NCA-Fc), the monomer for ROP reaction, was added to the electrode surface. The combined application of PEI-functionalized GO and NCA-Fc better achieves the high sensitivity and signal amplification of the aptasensor. Under optimal conditions, the aptasensor exhibited a wide linear range of 10 fg mL-1 to 10 ng mL-1 and the limit of detection was 3.78 fg mL-1. Moreover, this method displayed the advantages of good selectivity, simple operation and excellent stability. Meanwhile, the aptasensor had good accuracy and applicability even in real serum samples analysis, demonstrating its considerable application potential in biomedical assays.
Collapse
Affiliation(s)
- Zhenbo Zhou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tianyu Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450046, PR China
| | - Yuning Zhao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Peng Yang
- Department of Geriatric Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Di Cheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Ying Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xiaofei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
12
|
Yang R, Zhao L, Wang X, Kong W, Luan Y. Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection. Crit Rev Anal Chem 2023; 54:2670-2687. [PMID: 37029907 DOI: 10.1080/10408347.2023.2197062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Efficient and sensitive detection of targets is one of the motivations for constant development and innovation of various biosensors. CRISPR-Cas12a, a new generation of gene editing tools, has shown excellent application potential in biosensor design and construction. By combining with the specific recognition element-aptamer, a single-stranded oligonucleotide obtained by systematic evolution of ligands by exponential enrichment (SELEX) in vitro screening, CRISPR-Cas12a also shows superior performance non-nucleic acid targets detection, such as small molecules, proteins, virus and pathogenic bacteria. However, aptamer and CRISPR-Cas12a (CRISPR-Cas12a/Apt) still face some problems in non-nucleic acid target detection, such as single signal response mode and narrow linear range. The development of diverse CRISPR-Cas12a/Apt biosensors is necessary to meet the needs of various detection environments. In this review, the working principle of CRISPR-Cas12a/Apt was introduced and recent progress in CRISPR-Cas12a/Apt in the application of non-nucleic acid target detection was summarized. Moreover, the requirements of critical parameters such as crRNA sequence, activator sequence, and reaction system in the design of CRISPR-Cas12a/Apt biosensors were discussed, which could provide the reference for the design of efficient and sensitive novel non-nucleic acid target biosensors. In addition, the challenges and prospects of CRISPR-Cas12a/Apt-based biosensor were further presented.
Collapse
Affiliation(s)
- Ruiqi Yang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhao
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Xinjie Wang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Weijun Kong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yunxia Luan
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| |
Collapse
|
13
|
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023; 54:2599-2617. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Food safety is one of the greatest public problems occurring around the world. Chemical, physical, and microbiological hazards could lead to food safety problems, which might occur at all stages of the supply chain. To tackle food safety problems and protect consumer health, specific, accurate, and rapid diagnosis techniques meeting various requirements are the imperative measures to ensure food safety. CRISPR-Cas system, a novel emerging technology, is effectively repurposed in (bio)sensing and has shown a tremendous capability to develop on-site and portable diagnostic methods with high specificity and sensitivity. Among numerous existing CRISPR/Cas systems, CRISPR/Cas13a and CRISPR/Cas12a are extensively employed in the design of biosensors, owing to their ability to cleave both non-target and target sequences. However, the specificity limitation in CRISPR/Cas has hindered its progress. Nowadays, nucleic acid aptamers recognized for their specificity and high-affinity characteristics for their analytes are incorporated into CRISPR/Cas systems. With the benefits of reproducibility, high durability, portability, facile operation, and cost-effectiveness, CRISPR/Cas-based aptasensing approaches are an ideal choice for fabricating highly specific point-of-need analytical tools with enhanced response signals. In the current study, we explore some of the most recent progress in the CRISPR/Cas-mediated aptasensors for detecting food risk factors including veterinary drugs, pesticide residues, pathogens, mycotoxins, heavy metals, illegal additives, food additives, and other contaminants. The nanomaterial engineering support with CRISPR/Cas aptasensors is also signified to achieve a hopeful perspective to provide new straightforward test kits toward trace amounts of different contaminants encountered in food samples.
Collapse
Affiliation(s)
- Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Zhang M, Yang Y, Xin L, Zhang H, Wu L, Zhu J, Zhu J, Liu S, Wang Z, Chen Q, Yang G. CSDR Coupling with Exo III for Ultrasensitive Electrochemistry Determination of miR-145. Molecules 2023; 28:molecules28052208. [PMID: 36903456 PMCID: PMC10005534 DOI: 10.3390/molecules28052208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/04/2023] Open
Abstract
Recently, miRNAs have become a promising biomarker for disease diagnostics. miRNA-145 is closely related to strokes. The accuracy determination of miRNA-145 (miR-145) in stroke patients still remains challenging due to its heterogeneity and low abundance, as well as the complexity of the blood matrix. In this work, we developed a novel electrochemical miRNA-145 biosensor via subtly coupling the cascade strand displacement reaction (CSDR), exonuclease III (Exo III), and magnetic nanoparticles (MNPs). The developed electrochemical biosensor can quantitatively detect miRNA-145 ranging from 1 × 102 to 1 × 106 aM with a detection limit as low down as 100 aM. This biosensor also exhibits excellent specificity to distinguish similar miRNA sequences even with single-base differences. It has been successfully applied to distinguish healthy people from stroke patients. The results of this biosensor are consistent with the results of the reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proposed electrochemical biosensor has great potential applications for biomedical research on and clinical diagnosis of strokes.
Collapse
Affiliation(s)
- Moli Zhang
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen 518102, China
| | - Yang Yang
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen 518102, China
| | - Lingyi Xin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Hua Zhang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 430345, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 430345, China
| | - Jun Zhu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 430345, China
| | - Jing Zhu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Shiyun Liu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 430345, China
| | - Zhaohui Wang
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen 518102, China
| | - Qinhua Chen
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen 518102, China
- Correspondence: (Q.C.); (G.-y.Y.); Tel.: +86-18671933531 (Q.C.); +86-13971908298 (G.Y.)
| | - Guangyi Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
- Correspondence: (Q.C.); (G.-y.Y.); Tel.: +86-18671933531 (Q.C.); +86-13971908298 (G.Y.)
| |
Collapse
|
15
|
Feng ZY, Liu R, Li X, Zhang J. Harnessing the CRISPR-Cas13d System for Protein Detection by Dual-Aptamer-Based Transcription Amplification. Chemistry 2023; 29:e202202693. [PMID: 36400714 DOI: 10.1002/chem.202202693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
CRISPR-based biosensing technology has been emerging as a revolutionary diagnostic tool for many disease-related biomarkers. In particular, RspCas13d, a newly identified RNA-guided Cas13d ribonuclease derived from Ruminococcus sp., has shown great promise for accurate and sensitive detection of RNA due to its RNA sequence-specific recognition and robust collateral trans-cleavage activity. However, its diagnostic utility is limited to detecting nucleic-acid-related biomarkers. To address this limitation, herein we present a proof-of-concept demonstration of a target-responsive CRISPR-Cas13d sensing system for protein biomarkers. This system was rationally designed by integrating a dual-aptamer-based transcription amplification strategy with CRISPR-Cas13d (DATAS-Cas13d), in which the protein binding initiates in-vitro RNA transcription followed by the activation of RspCas13d. Using a short fluorescent ssRNA as the signal reporter and cardiac troponin I (cTnI) as the model analyte, the DATAS-Cas13d system showed a wide linear range, low detection limit, and high specificity for the detection of cTnI in buffer and human serum. Thanks to the facile integration of various bioreceptors into the DATAS-Cas13d system, the method could be adapted to detecting a broad range of clinically relevant protein biomarkers, and thus broaden the medical applications of Cas13d-based diagnostics.
Collapse
Affiliation(s)
- Zhi-Yuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
16
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
17
|
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Majdinasab M, Marty JL. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals (Basel) 2022; 15:995. [PMID: 36015143 PMCID: PMC9412480 DOI: 10.3390/ph15080995] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
The early diagnosis of diseases is of great importance for the effective treatment of patients. Biomarkers are one of the most promising medical approaches in the diagnosis of diseases and their progress and facilitate reaching this goal. Among the many methods developed in the detection of biomarkers, aptamer-based biosensors (aptasensors) have shown great promise. Aptamers are promising diagnostic molecules with high sensitivity and selectivity, low-cost synthesis, easy modification, low toxicity, and high stability. Electrochemical aptasensors with high sensitivity and accuracy have attracted considerable attention in the field of biomarker detection. In this review, we will summarize recent advances in biomarker detection using electrochemical aptasensors. The principles of detection, sensitivity, selectivity, and other important factors in aptasensor performance are investigated. Finally, advantages and challenges of the developed aptasensors are discussed.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Jean Louis Marty
- Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|