1
|
Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 2014; 32:564-74. [PMID: 24566241 DOI: 10.1016/j.biotechadv.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/13/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Shuangshuang Dong
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zheng
- College of laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Duanhua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Manzano-Román R, Díaz-Martín V, González-González M, Matarraz S, Álvarez-Prado AF, LaBaer J, Orfao A, Pérez-Sánchez R, Fuentes M. Self-assembled Protein Arrays from an Ornithodoros moubata Salivary Gland Expression Library. J Proteome Res 2012; 11:5972-82. [DOI: 10.1021/pr300696h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Raul Manzano-Román
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Veronica Díaz-Martín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Maria González-González
- Centro de Investigación
del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina
y Servicio General de Citometría, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio Matarraz
- Centro de Investigación
del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina
y Servicio General de Citometría, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Angel Francisco Álvarez-Prado
- Centro de Investigación
del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina
y Servicio General de Citometría, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized
Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-6401, United States
| | - Alberto Orfao
- Centro de Investigación
del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina
y Servicio General de Citometría, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Manuel Fuentes
- Centro de Investigación
del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina
y Servicio General de Citometría, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Caschera F, Bedau MA, Buchanan A, Cawse J, de Lucrezia D, Gazzola G, Hanczyc MM, Packard NH. Coping with complexity: Machine learning optimization of cell-free protein synthesis. Biotechnol Bioeng 2011; 108:2218-28. [DOI: 10.1002/bit.23178] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/12/2022]
|
4
|
Lee S, Lassalle MW. Firm wheat-germ cell-free system with extended vector usage for high-throughput protein screening. J Biosci Bioeng 2011; 112:170-7. [PMID: 21601517 DOI: 10.1016/j.jbiosc.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/07/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
The wheat germ cell-free system is composed out of five basic steps, growth of Escherichia coli harboring plasmid, first colony-PCR, second PCR, transcription, and translation. Improvements of culture medium, colony based PCR, and modifications within the split primer set of the second PCR amplify both DNA and RNA levels. This yields more than 5 times increase in protein amount for pEU-originated templates. Especially, for the low PCR-amplifiable vectors with pET-origin, it leads to 30 fold higher product amount in translation. This broadens the range of usable vectors, overcoming the existing cell-free system limitations for high-throughput protein screening. Noteworthily, the system successfully maintains translation by S-30 cell-free extract below 30 OD. In conclusion, this improved firm cell-free system reduces cost and enables robotic automation and high-throughput thermodynamic analysis, especially for proteins that are difficult to be expressed.
Collapse
Affiliation(s)
- SungGa Lee
- Senior Research Fellow Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | |
Collapse
|
5
|
Johansen SD, Emblem Å, Karlsen BO, Okkenhaug S, Hansen H, Moum T, Coucheron DH, Seternes OM. Approaching marine bioprospecting in hexacorals by RNA deep sequencing. N Biotechnol 2010; 27:267-75. [DOI: 10.1016/j.nbt.2010.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Resonant Waveguide Grating Biosensor for Microarrays. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2010. [DOI: 10.1007/978-3-642-02827-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
Chandra H, Srivastava S. Cell-free synthesis-based protein microarrays and their applications. Proteomics 2009; 10:717-30. [DOI: 10.1002/pmic.200900462] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
ZHANG J, LIU QM, XU DK, HE FC. In situ Fabrication and Application of Protein Microarray With Cell-free System*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Mureev S, Kovtun O, Nguyen UTT, Alexandrov K. Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 2009; 27:747-52. [DOI: 10.1038/nbt.1556] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/06/2009] [Indexed: 11/09/2022]
|
10
|
Schwarz D, Dötsch V, Bernhard F. Production of membrane proteins using cell-free expression systems. Proteomics 2009; 8:3933-46. [PMID: 18763710 DOI: 10.1002/pmic.200800171] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Production of membrane proteins (MPs) is a challenging task as their hydrophobic nature and their specific requirements in cellular expression systems frequently prevent an efficient synthesis. Cell-free (CF) expression systems have been developed in recent times as promising tools by offering completely new approaches to synthesize MPs directly into artificial hydrophobic environments. A considerable variety of CF produced MPs has been characterized by functional and structural approaches and the high success rates and the rapidly accumulating data on quality and expression efficiencies increasingly attract attention. In addition, CF expression is a highly dynamic and versatile technique and new modifications for improved performance as well as for extended applications for the labeling, throughput expression and proteomic analysis of MPs are rapidly emerging.
Collapse
Affiliation(s)
- Daniel Schwarz
- Centre for Biomolecular Magnetic Resonance, University of Frankfurt/Main, Institute for Biophysical Chemistry, Frankfurt/Main, Germany
| | | | | |
Collapse
|