1
|
Zhang S, Chen L. Acoustic information masking effects of natural sounds on traffic noise based on psychological health in open urban spaces. Front Public Health 2023; 11:1031501. [PMID: 36935713 PMCID: PMC10022823 DOI: 10.3389/fpubh.2023.1031501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
The use of existing resources, such as natural sounds, to promote the mental health of citizens is an area of research that is receiving increasing attention. This research contributes to existing knowledge by combining a field psychological walk method and an experimental acoustic control method to compare the acoustic information masking effects of water and birdsong sounds on traffic noise based on the psychological health responses of 30 participants to such effects. The influence of traffic noise and contextual sounds on the psychological health of participants identified the potential of natural sounds in the acoustic information masking of traffic noise. Furthermore, it was found that 65.0 dBA water sounds did not mask 60.0 dBA traffic noises. However, 45.0 dBA birdsong sounds did mask it, but this effect was not significant. Additionally, contextual factors with and without crowd activity sounds were not significant in influencing psychological health through birdsong. This study contributes to public health cost savings. It may also guide the development of new ideas and methods for configuring open urban spaces according to public health needs.
Collapse
|
2
|
Mycoplasmas-Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms 2020; 8:microorganisms8091351. [PMID: 32899663 PMCID: PMC7565387 DOI: 10.3390/microorganisms8091351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mycoplasmas are the smallest and simplest self-replicating prokaryotes. Located everywhere in nature, they are widespread as parasites of humans, mammals, reptiles, fish, arthropods, and plants. They usually exhibiting organ and tissue specificity. Mycoplasmas belong to the class named Mollicutes (mollis = soft and cutis = skin, in Latin), and their small size and absence of a cell wall contribute to distinguish them from other bacteria. Mycoplasma species are found both outside the cells as membrane surface parasites and inside the cells, where they become intracellular residents as "silent parasites". In humans, some Mycoplasma species are found as commensal inhabitants, while others have a significant impact on the cellular metabolism and physiology. Mollicutes lack typical bacterial PAMPs (e.g., lipoteichoic acid, flagellin, and some lipopolysaccharides) and consequently the exact molecular mechanisms of Mycoplasmas' recognition by the cells of the immune system is the subjects of several researches for its pathogenic implications. It is well known that several strains of Mycoplasma suppress the transcriptional activity of p53, resulting in reduced apoptosis of damaged cells. In addition, some Mycoplasmas were reported to have oncogenic potential since they demonstrated not just accumulation of abnormalities but also phenotypic changes of the cells. Aim of this review is to provide an update of the current literature that implicates Mycoplasmas in triggering inflammation and altering critical cellular pathways, thus providing a better insight into potential mechanisms of cellular transformation.
Collapse
|
3
|
Effects of Mycoplasmas on the Host Cell Signaling Pathways. Pathogens 2020; 9:pathogens9040308. [PMID: 32331465 PMCID: PMC7238135 DOI: 10.3390/pathogens9040308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms. Reduced sizes of their genomes put constraints on the ability of these bacteria to live autonomously and make them highly dependent on the nutrients produced by host cells. Importantly, at the organism level, mycoplasmal infections may cause pathological changes to the host, including cancer and severe immunological reactions. At the molecular level, mycoplasmas often activate the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) inflammatory response and concomitantly inhibit the p53-mediated response, which normally triggers the cell cycle and apoptosis. Thus, mycoplasmal infections may be considered as cancer-associated factors. At the same time, mycoplasmas through their membrane lipoproteins (LAMPs) along with lipoprotein derivatives (lipopeptide MALP-2, macrophage-activating lipopeptide-2) are able to modulate anti-inflammatory responses via nuclear translocation and activation of Nrf2 (the nuclear factor-E2-related anti-inflammatory transcription factor 2). Thus, interactions between mycoplasmas and host cells are multifaceted and depend on the cellular context. In this review, we summarize the current information on the role of mycoplasmas in affecting the host’s intracellular signaling mediated by the interactions between transcriptional factors p53, Nrf2, and NF-κB. A better understanding of the mechanisms underlying pathologic processes associated with reprogramming eukaryotic cells that arise during the mycoplasma-host cell interaction should facilitate the development of new therapeutic approaches to treat oncogenic and inflammatory processes.
Collapse
|
4
|
Zhang S, Zhao X, Zeng Z, Qiu X. The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101845. [PMID: 31137662 PMCID: PMC6572538 DOI: 10.3390/ijerph16101845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
Audio-visual interactions in green spaces are important for mental health and wellbeing. However, the influence of audio-visual interactions on psychological responses is still less clear. This study introduced a new method, namely the audio-visual walk (AV-walk), to obtain data on the audio-visual context, audio-visual experiences, and psychological responses in two typical parks, namely Cloves Park and Music Park in Harbin, China. Some interesting results are as follows: First, based on Pearson’s correlation analysis, sound pressure level and roughness were significantly correlated with psychological responses in Cloves Park (p < 0.05). Second, the results of stepwise regression models showed the impact intensity of acoustic comfort was 1.64–1.68 times higher than that of visual comfort on psychological responses of emotion dimension, while visual comfort was 1.35–1.37 times higher than acoustic comfort on psychological responses of cognition dimension in Music Park. In addition, an orthogonal analysis diagram explained the influence of audio-visual interactions on psychological responses of young people. The audio-visual context located beside the waterscape with a relatively higher level of acoustic and visual comfort was the most cheerful (2.60), relaxed (2.45), and energetic (2.05), while the audio-visual context close to an urban built environment tended to be both acoustically and visually uncomfortable, and the psychological state was decreased to the most depressed (−0.25), anxious (−0.75), fatigued (−1.13) and distracted (−1.13).
Collapse
Affiliation(s)
- Shilun Zhang
- Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaolong Zhao
- Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China.
- School of Architecture and Urban Planning, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zixi Zeng
- Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China.
| | - Xuan Qiu
- Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
5
|
Borchsenius SN, Daks A, Fedorova O, Chernova O, Barlev NA. Effects of mycoplasma infection on the host organism response via p53/NF‐κB signaling. J Cell Physiol 2018; 234:171-180. [DOI: 10.1002/jcp.26781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Alexandra Daks
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| | - Olga Fedorova
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| | - Olga Chernova
- Kazan Scientific Center Kazan Institute of Biochemistry and Biophysics, Laboratory “Omics Technology”, Russian Academy of Sciences Kazan Russia
| | - Nickolai A. Barlev
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| |
Collapse
|
6
|
Abstract
There is no good science in bad models. Cell culture is especially prone to artifacts. A number of novel cell culture technologies have become more broadly available in the 21st century, which allow overcoming limitations of traditional culture and are more physiologically relevant. These include the use of stem-cell derived human cells, cocultures of different cell types, scaffolds and extracellular matrices, perfusion platforms (such as microfluidics), 3D culture, organ-on-chip technologies, tissue architecture, and organ functionality. The physiological relevance of such models is further enhanced by the measurement of biomarkers (e.g., key events of pathways), organ specific functionality, and more comprehensive assessment cell responses by high-content methods. These approaches are still rarely combined to create microphysiological systems. The complexity of the combination of these technologies can generate results closer to the in vivo situation but increases the number of parameters to control, bringing some new challenges. In fact, we do not argue that all cell culture needs to be that sophisticated. The efforts taken are determined by the purpose of our experiments and tests. If only a very specific molecular target to cell response is of interest, a very simple model, which reflects this, might be much more suited to allow standardization and high-throughput. However, the less defined the end point of interest and cellular response are, the better we should approximate organ- or tissue-like culture conditions to make physiological responses more probable. Besides these technologic advances, important progress in the quality assurance and reporting on cell cultures as well as the validation of cellular test systems brings the utility of cell cultures to a new level. The advancement and broader implementation of Good Cell Culture Practice (GCCP) is key here. In toxicology, this is a major prerequisite for meaningful and reliable results, ultimately supporting risk assessment and product development decisions.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States.,CAAT-Europe, University of Konstanz , 78464 Konstanz, Germany
| |
Collapse
|
7
|
Chugh RM, Chaturvedi M, Yerneni LK. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis. Burns 2015; 41:1788-1795. [PMID: 26392024 DOI: 10.1016/j.burns.2015.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/04/2015] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
Growth arrested 3T3 cells have been used as feeder cells in human epidermal keratinocyte cultures to produce cultured epidermal autografts for the treatment of burns. The feeder cells were ideally growth-arrested by gamma-irradiation. Alternatively, growth arrest by mitomycin C treatment is a cost effective option. We compared the functional efficacy of these two approaches in keratinocyte cultures by colony forming efficiency, the net growth area of colonies, BrdU labeling and histological features of cultured epidermal sheets. The growth area estimation involved a semi-automated digital technique using the Adobe Photoshop and comprised of isolation and enumeration of red pixels in Rhodamine B-stained keratinocyte colonies. A further refinement of the technique led to the identification of critical steps to increasing the degree of accuracy and enabling its application as an extension of colony formation assay. The results on feeder cell functionality revealed that the gamma irradiated feeders influenced significantly higher colony forming efficiency and larger growth area than the mitomycin C treated feeders. The BrdU labeling study indicated significant stimulation of the overall keratinocyte proliferation by the gamma irradiated feeders. The cultured epidermal sheets produced by gamma feeders were relatively thicker than those produced by mitomycin C feeders. We discussed the clinical utility of mitomycin C feeders from the viewpoint of cost-effective burn care in developing countries.
Collapse
Affiliation(s)
- Rishi Man Chugh
- Cell Biology Laboratory, National Institute of Pathology (ICMR), New Delhi, India
| | - Madhusudan Chaturvedi
- Cell Biology Laboratory, National Institute of Pathology (ICMR), New Delhi, India; Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
8
|
Assessment of Integration-defective HIV-1 and EIAV Vectors In Vitro and In Vivo. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e60. [PMID: 23232328 PMCID: PMC3528299 DOI: 10.1038/mtna.2012.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The interest in integrase-defective lentiviral vectors (IDLVs) stems from their potential advantage of large cloning capacity and broad cell tropism while avoiding the possibility of insertional mutagenesis. Here, we directly compared the transducing potential of IDLVs based on the equine infectious anemia virus (EIAV) to the more commonly described HIV-1 IDLVs. IDLVs were constructed by introducing equivalent single/triple mutations into the integrase catalytic triad. We show that both the single and the triple mutant HIV-1 IDLVs transduce the PC12 cells, but not the C2C12 cells, with similar efficiency to their parental HIV-1 vector. In contrast, the single and triple EIAV IDLVs did not efficiently transduce either differentiated cell line. Moreover, this HIV-1 IDLV-mediated expression was independent of any residual integration activity because reporter expression was lost when cell cycling was restored. Four weeks following stereotactic administration into adult rat brains, only the single HIV-1 IDLV mutant displayed a comparable transduction profile to the parental HIV-1 vector. In contrast, neither EIAV IDLV mutants showed significant reporter gene expression. This work indicates that the transducing potential of IDLVs appears to depend not only on the choice of integrase mutation and type of target cell, but also on the nature of the lentiviral vector.
Collapse
|
9
|
Alghamdi KM, Kumar A, Taïeb A, Ezzedine K. Assessment methods for the evaluation of vitiligo. J Eur Acad Dermatol Venereol 2012; 26:1463-71. [PMID: 22416879 DOI: 10.1111/j.1468-3083.2012.04505.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is no standardized method for assessing vitiligo. In this article, we review the literature from 1981 to 2011 on different vitiligo assessment methods. We aim to classify the techniques available for vitiligo assessment as subjective, semi-objective or objective; microscopic or macroscopic; and as based on morphometry or colorimetry. Macroscopic morphological measurements include visual assessment, photography in natural or ultraviolet light, photography with computerized image analysis and tristimulus colorimetry or spectrophotometry. Non-invasive micromorphological methods include confocal laser microscopy (CLM). Subjective methods include clinical evaluation by a dermatologist and a vitiligo disease activity score. Semi-objective methods include the Vitiligo Area Scoring Index (VASI) and point-counting methods. Objective methods include software-based image analysis, tristimulus colorimetry, spectrophotometry and CLM. Morphometry is the measurement of the vitiliginous surface area, whereas colorimetry quantitatively analyses skin colour changes caused by erythema or pigment. Most methods involve morphometry, except for the chromameter method, which assesses colorimetry. Some image analysis software programs can assess both morphometry and colorimetry. The details of these programs (Corel Draw, Image Pro Plus, AutoCad and Photoshop) are discussed in the review. Reflectance confocal microscopy provides real-time images and has great potential for the non-invasive assessment of pigmentary lesions. In conclusion, there is no single best method for assessing vitiligo. This review revealed that VASI, the rule of nine and Wood's lamp are likely to be the best techniques available for assessing the degree of pigmentary lesions and measuring the extent and progression of vitiligo in the clinic and in clinical trials.
Collapse
Affiliation(s)
- K M Alghamdi
- Dermatology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
10
|
Campuzano-Zuluaga G, Alvarez-Sánchez G, Escobar-Gallo GE, Valencia-Zuluaga LM, Ríos-Orrego AM, Pabón-Vidal A, Miranda-Arboleda AF, Blair-Trujillo S, Campuzano-Maya G. Design of malaria diagnostic criteria for the Sysmex XE-2100 hematology analyzer. Am J Trop Med Hyg 2010; 82:402-11. [PMID: 20207864 DOI: 10.4269/ajtmh.2010.09-0464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Thick film, the standard diagnostic procedure for malaria, is not always ordered promptly. A failsafe diagnostic strategy using an XE-2100 analyzer is proposed, and for this strategy, malaria diagnostic models for the XE-2100 were developed and tested for accuracy. Two hundred eighty-one samples were distributed into Plasmodium vivax, P. falciparum, and acute febrile syndrome groups for model construction. Model validation was performed using 60% of malaria cases and a composite control group of samples from AFS and healthy participants from endemic and non-endemic regions. For P. vivax, two observer-dependent models (accuracy = 95.3-96.9%), one non-observer-dependent model using built-in variables (accuracy = 94.7%), and one non-observer-dependent model using new and built-in variables (accuracy = 96.8%) were developed. For P. falciparum, two non-observer-dependent models (accuracies = 85% and 89%) were developed. These models could be used by health personnel or be integrated as a malaria alarm for the XE-2100 to prompt early malaria microscopic diagnosis.
Collapse
|