1
|
Hayton A, O'Brien A, Adler A, Cutler K, Clarke J, Shaw DJ, Watt NJ, Harkiss GD. Diagnostic performance of the Enferplex Bovine TB antibody test using bulk tank milk samples from dairy cattle. J Dairy Sci 2025:S0022-0302(25)00163-8. [PMID: 40139377 DOI: 10.3168/jds.2024-25539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/23/2025] [Indexed: 03/29/2025]
Abstract
Bovine tuberculosis, caused mainly by Mycobacterium bovis, is a major disease of cattle worldwide associated with significant economic losses and is usually diagnosed using periodic tuberculin skin tests, interferon gamma release assay, or at postmortem. Recently, we have developed a multiplex test for detecting antibodies to Mycobacterium bovis in cattle which has high sensitivity and specificity using serum or individual milk samples. Here, we have assessed the performance of the test using bulk tank milk samples from skin test positive and bovine tuberculosis-free cattle herds. In non-anamnestic bulk tank milk samples, the sensitivity relative to the comparative cervical skin test was 77.2% and the specificity was 99.8% using the high sensitivity setting of the antibody test. A kappa value of 0.85 was found indicating almost perfect agreement between the test results and comparative cervical skin test status of the herds. Likelihood ratio analysis gave positive likelihood ratio of 53.1 and a negative likelihood ratio of 0.030, indicating that the test provides good diagnostic evidence of the infection being either present or absent respectively. Bulk tank milk samples from herds with inconclusive reactors to the comparative cervical skin test but no reactors gave a test positivity of 73.7%, indicating that antibody positive animals were present in the herd after removal of the reactors. Variances in herd prevalence did not result in statistically significant differences in test positivity, and the test was able to detect a herd prevalence of 0.1% of comparative cervical skin test reactors in 80% of low prevalence herds. The test showed good repeatability and reproducibility, giving complete concordance in results from 3 independent laboratories. The results show that the bulk milk antibody test could be used as a non-anamnestic surveillance tool for detecting and monitoring bovine tuberculosis in dairy cattle herds.
Collapse
Affiliation(s)
- Alastair Hayton
- Synergy Farm Health Ltd., The Transmission Hall, Rampisham Business Centre, Rampisham Down, Maiden Newton, Dorset, DT2 0HS
| | - Amanda O'Brien
- Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, County Kildare, Ireland
| | - Andy Adler
- Synergy Farm Health Ltd., The Transmission Hall, Rampisham Business Centre, Rampisham Down, Maiden Newton, Dorset, DT2 0HS
| | - Keith Cutler
- Synergy Farm Health Ltd., The Transmission Hall, Rampisham Business Centre, Rampisham Down, Maiden Newton, Dorset, DT2 0HS
| | - John Clarke
- Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, County Kildare, Ireland
| | - Darren J Shaw
- Royal (Dick) School of Veterinary Studies & The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh UK
| | - Neil J Watt
- MV Diagnostics Ltd., Roslin Innovation Centre, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Gordon D Harkiss
- MV Diagnostics Ltd., Roslin Innovation Centre, University of Edinburgh, Easter Bush Campus, Edinburgh, UK..
| |
Collapse
|
2
|
O’Brien A, Hayton A, Cutler K, Adler A, Shaw DJ, Clarke J, Watt N, Harkiss GD. Diagnostic accuracy of the Enferplex Bovine TB antibody test using individual milk samples from cattle. PLoS One 2024; 19:e0301609. [PMID: 38687765 PMCID: PMC11060599 DOI: 10.1371/journal.pone.0301609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine tuberculosis is usually diagnosed using tuberculin skin tests or at post-mortem. Recently, we have developed a serological test for bovine tuberculosis in cattle which shows a high degree of accuracy using serum samples. Here, we have assessed the performance of the test using individual bovine milk samples. The diagnostic specificity estimate using the high sensitivity setting of the test was 99.7% (95% CI: 99.2-99.9). This estimate was not altered significantly by tuberculin boosting. The relative sensitivity estimates of the test using the high sensitivity setting in milk samples from comparative skin test positive animals was 90.8% (95% CI: 87.1-93.6) with boosting. In animals with lesions, the relative sensitivity was 96.0% (95% CI: 89.6-98.7). Analysis of paired serum and milk samples from skin test positive animals showed correlation coefficients ranging from 0.756-0.955 for individual antigens used in the test. Kappa analysis indicated almost perfect agreement between serum and milk results, while McNemar marginal homogeneity analysis showed no statistically significant differences between the two media. The positive and negative likelihood ratio were 347.8 (95% CI: 112.3-1077.5) and 0.092 (95% CI: 0.07-0.13) respectively for boosted samples from skin test positive animals. The results show that the test has high sensitivity and specificity in individual milk samples and thus milk samples could be used for the diagnosis of bovine tuberculosis.
Collapse
Affiliation(s)
| | | | - Keith Cutler
- Synergy Farm Health, Maiden Newton, Dorset, United Kingdom
| | - Andy Adler
- Synergy Farm Health, Maiden Newton, Dorset, United Kingdom
| | - Darren J. Shaw
- Royal (Dick) School of Veterinary Studies & The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John Clarke
- Enfer Scientific, Naas, County Kildare, Ireland
| | - Neil Watt
- MV Diagnostics Ltd, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Gordon D. Harkiss
- MV Diagnostics Ltd, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
4
|
Yunus MH, Yusof NA, Abdullah J, Sulaiman Y, Ahmad Raston NH, Md Noor SS. Simultaneous Amperometric Aptasensor Based on Diazonium Grafted Screen-Printed Carbon Electrode for Detection of CFP10 and MPT64 Biomarkers for Early Tuberculosis Diagnosis. BIOSENSORS 2022; 12:bios12110996. [PMID: 36354505 PMCID: PMC9688523 DOI: 10.3390/bios12110996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/02/2023]
Abstract
Early diagnosis is highly crucial for life-saving and transmission management of tuberculosis (TB). Despite the low sensitivity and time-consuming issues, TB antigen detection still relies on conventional smear microscopy and culture techniques. To address this limitation, we report the development of the first amperometric dual aptasensor for the simultaneous detection of Mycobacterium tuberculosis secreted antigens CFP10 and MPT64 for better diagnosis and control of TB. The developed sensor was based on the aptamers-antibodies sandwich assay and detected by chronoamperometry through the electrocatalytic reaction between peroxidase-conjugated antibodies, H2O2, and hydroquinone. The CFP10 and MPT64 aptamers were immobilized via carbodiimide covalent chemistry over the disposable dual screen-printed carbon electrodes modified with a 4-carboxyphenyl diazonium salt. Under optimized conditions, the aptasensor achieved a detection limit of 1.68 ng mL-1 and 1.82 ng mL-1 for CFP10 and MPT64 antigens, respectively. The developed assay requires a small sample amount (5 µL) and can be easily performed within 2.5 h. Finally, the dual aptasensor was successfully applied to clinical sputum samples with the obtained diagnostic sensitivity (n = 24) and specificity (n = 13) of 100%, respectively, suggesting the readiness of the developed assay to be used for TB clinical application.
Collapse
Affiliation(s)
- Muhammad Hafiznur Yunus
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jaafar Abdullah
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yusran Sulaiman
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Suraiya Md Noor
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
5
|
Zhou F, Xu X, Cui X, Pan W. Development and Evaluation of a Fusion Polyprotein Based on HspX and Other Antigen Sequences for the Serodiagnosis of Tuberculosis. Front Immunol 2021; 12:726920. [PMID: 34671347 PMCID: PMC8521024 DOI: 10.3389/fimmu.2021.726920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background The lack of suitable diagnostic tools contributes to the high prevalence of tuberculosis (TB) worldwide. Serological tests, based on multiple target antigens, represent an attractive option for diagnosis of this disease due to their rapidity, convenience, and low cost. Methods Measures to reduce non-specific reactions and thereby improve the specificity of serological tests were investigated, including blocking antibodies against common bacteria in serum samples and synthesizing polypeptides covering non-conserved dominant B-cell epitopes of antigens. In addition, a fusion polyprotein containing HspX and eight other antigen sequences was constructed and expressed to increase overall sensitivity of the tests. Results Inclusion of Escherichia coli lysate partially increased the specificity of the serological tests, while synthesis and inclusion of peptides containing non-conserved sequences of TB antigens as well as dominant B-cell epitopes reduced non-specific reactions without a decrease in sensitivity of the tests. A polyprotein fusing HspX and eight other antigen sequences was constructed and displayed 60.2% sensitivity, which was higher than that of HspX and the other individual antigen segments. Moreover, the specificity of the polyprotein was 93.8%, which was not significantly decreased when compared with HspX and the other individual antigen segments. Conclusions The roles of the fusion polyprotein in the humoral immune response against TB infection were demonstrated and provide a potential novel approach for the development of TB diagnostics.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
- Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xindong Xu
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaobing Cui
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Weiqing Pan
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Le Moigne V, Roux AL, Mahoudo H, Christien G, Ferroni A, Dumitrescu O, Lina G, Bouchara JP, Plésiat P, Gaillard JL, Canaan S, Héry-Arnaud G, Herrmann JL. Serological biomarkers for the diagnosis of Mycobacterium abscessus infections in cystic fibrosis patients. J Cyst Fibros 2021; 21:353-360. [PMID: 34511392 DOI: 10.1016/j.jcf.2021.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Culture conditions sometimes make it difficult to detect non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus, an emerging cystic fibrosis (CF) pathogen. The diagnosis of NTM positive cases not detected by classical culture methods might benefit from the development of a serological assay. METHODS As part of a diagnostic accuracy study, a total of 173 sera CF-patients, including 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls (HC) were evaluated. Four M. abscessus antigens were used separately, comprising two surface extracts (Interphase (INP) and a TLR2 positive extract (TLR2eF)) and two recombinant proteins (rMAB_2545c and rMAB_0555 also known as the phospholipase C (rPLC)). RESULTS TLR2eF and rPLC were the most efficient antigens to discriminate NTM-culture positive CF-patients from NTM-culture negative CF-patients. The best clinical values were obtained for the detection of M. abscessus-culture positive CF-patients; with sensitivities for the TLR2eF and rPLC of 81.2% (95% CI:65.7-92.3%) and 87.9% (95% CI:71.9-95.6%) respectively, and specificities of 88.9% (95% CI:85.3-94.8%) and 84.8% (95% CI:80.6-91.5%) respectively. When considering as positive all sera, giving a positive response in at least one of the two tests, and, as negative, all sera negative for both tests, we obtained a sensitivity of 93.9% and a specificity of 80.7% for the detection of M. abscessus-culture positive CF-patients. CONCLUSION High antibody titers against TLR2eF and rPLC were obtained in M. abscessus-culture positive CF-patients, allowing us to consider these serological markers as potential tools in the detection of CF-patients infected with M. abscessus.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France.
| | - Anne-Laure Roux
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France; AP-HP, GHU Paris Saclay, Hôpital Ambroise Paré, Service de Microbiologie, Boulogne-Billancourt, France
| | - Hélène Mahoudo
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Gaëtan Christien
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Agnès Ferroni
- AP-HP, GHU Paris, Hôpital Necker-Enfants Malades, Service de Microbiologie, Paris 15e, France
| | - Oana Dumitrescu
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004, Lyon, France; Centre International de Recherche en Infectiologie, INSERM U1111, Université de Lyon, Lyon, France
| | - Gérard Lina
- Hospices Civils de Lyon, Hôpital de la Croix Rousse-Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Bactériologie, Grande Rue de la Croix Rousse, 69004, Lyon, France; Centre International de Recherche en Infectiologie, INSERM U1111, Université de Lyon, Lyon, France
| | - Jean-Philippe Bouchara
- CHU, Service de Parasitologie-Mycologie, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, CHRU de Besançon, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Louis Gaillard
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France; AP-HP, GHU Paris Saclay, Hôpital Ambroise Paré, Service de Microbiologie, Boulogne-Billancourt, France
| | - Stéphane Canaan
- Université Aix-Marseille, CNRS, LISM, IMM FR3479, Marseille, France
| | - Geneviève Héry-Arnaud
- Département de bactériologie-virologie, hygiène et parasitologie-mycologie, centre hospitalier régional universitaire (CHRU) de Brest, Brest, France; Inserm, EFS, UMR 1078 France « génétique, génomique fonctionnelle et biotechnologies », GGB, université Brest, 29200 Brest, France
| | - Jean-Louis Herrmann
- Université Paris Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France; AP-HP, GHU Paris Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France.
| |
Collapse
|
7
|
Gutiérrez-Ortega A, Moreno DA, Ferrari SA, Espinosa-Andrews H, Ortíz EP, Milián-Suazo F, Alvarez AH. High-yield production of major T-cell ESAT6-CFP10 fusion antigen of M. tuberculosis complex employing codon-optimized synthetic gene. Int J Biol Macromol 2021; 171:82-88. [PMID: 33418045 DOI: 10.1016/j.ijbiomac.2020.12.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Translation engineering and bioinformatics have accelerated the rate at which gene sequences can be improved to generate multi-epitope proteins. Strong antigenic proteins for tuberculosis diagnosis include individual ESAT6 and CFP10 proteins or derived peptides. Obtention of heterologous multi-component antigens in E. coli without forming inclusion bodies remain a biotechnological challenge. The gene sequence for ESAT6-CFP10 fusion antigen was optimized by codon bias adjust for high-level expression as a soluble protein. The obtained fusion protein of 23.7 kDa was observed by SDS-PAGE and Western blot analysis after Ni-affinity chromatography and the yield of expressed soluble protein reached a concentration of approximately 67 mg/L in shake flask culture after IPTG induction. Antigenicity was evaluated at 4 μg/mL in whole blood cultures from bovines, and protein stimuli were assessed using a specific in vitro IFN-γ release assay. The hybrid protein was able to stimulate T-cell specific responses of bovine TB suspects. The results indicate that improved E. coli codon usage is a good and cost-effective strategy to potentialize large scale production of multi-epitope proteins with sustained antigenic properties for diagnostic purposes.
Collapse
Affiliation(s)
- A Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - D A Moreno
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - S A Ferrari
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - H Espinosa-Andrews
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - E P Ortíz
- Centro Universitario de Los Altos, Universidad de Guadalajara, Km 7.5 Carretera a Yahualica, CP 47600 Tepatitlán de Morelos, Mexico
| | - F Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n Juriquilla, Delegación Santa Rosa Jáuregui, C.P. 76230 Querétaro, Mexico
| | - A H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico.
| |
Collapse
|