1
|
Fazeli MA, Amiri M, Rostaminasab G, Akbaripour V, Mikaeili A, Othman M, Rezakhani L. Application of decellularized tissues in ear regeneration. J Tissue Viability 2025; 34:100870. [PMID: 39970482 DOI: 10.1016/j.jtv.2025.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
More than 5 % of people worldwide suffer from hearing disorders. Ototoxic drugs, aging, exposure to loud sounds, rupture, subperichondrial hematoma, perichondritis, burns and frostbite and infections are the main causes of hearing loss, some of which can destroy the cartilage and lead to deformation. On the other hand, disorders of the external ear are diverse and can range from dangerous neoplasms to defects that are not acceptable from a cosmetic standpoint. These issues include injuries, blockages, dermatoses, and infections, and any or all of them may be bothersome to the busy doctor. Using an implant or hearing aid is one of the treatment strategies for deafness. However, these medical devices are not useful for every eligible patient. With the right therapy, many of these issues are not life-threatening and can be treated with confidence in a positive outcome. As medical research and treatment have advanced dramatically in the past ten years, tissue engineering (TE) has emerged as a promising method to regenerate damaged tissue, raising the prospect of a permanent cure for deafness. Decellularization is now seen as a promising development for regenerative medicine, and an increasing number of applications are being found for acellular matrices. Studies on decellularization show that natural scaffolds made from decellularized tissues can serve as a suitable platform while preserving the main components, and the preparation of such scaffolds will be an important part of future bioscience research. It can have wide applications in regenerative medicine and TE. This review intends to give an overview of the status of research and alternative scaffolds in inner and outer ear regenerative medicine from both a preclinical and clinical perspective for ear disorders in order to show how ongoing TE research has the potential to advance and enhance novel disease treatments.
Collapse
Affiliation(s)
- Manouchehr Avatef Fazeli
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Amiri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Akbaripour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Othman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Chen W, Nie M, Gan J, Xia N, Wang D, Sun L. Tailoring cell sheets for biomedical applications. SMART MEDICINE 2024; 3:e20230038. [PMID: 39188516 PMCID: PMC11235941 DOI: 10.1002/smmd.20230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 08/28/2024]
Abstract
Cell sheet technology has emerged as a novel scaffold-free approach for cell-based therapies in regenerative medicine. Techniques for harvesting cell sheets are essential to preserve the integrity of living cell sheets. This review provides an overview of fundamental technologies to fabricate cell sheets and recent advances in cell sheet-based tissue engineering. In addition to the commonly used temperature-responsive systems, we introduce alternative approaches, such as ROS-induced, magnetic-controlled, and light-induced cell sheet technologies. Moreover, we discuss the modification of the cell sheet to improve its function, including stacking, genetic modification, and vascularization. With the significant advances in cell sheet technology, cell sheets have been widely applied in various tissues and organs, including but not limited to the lung, cornea, cartilage, periodontium, heart, and liver. This review further describes both the preclinical and clinical applications of cell sheets. We believe that the progress in cell sheet technology would further propel its biomedical applications.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Nie
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Nan Xia
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Dandan Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
3
|
Lee H, Lee JH, Hong S, Sunwoo JH, Kim HT, Kim ES, Kim JY, Hwang C, Tchah H. Transplantation of human corneal limbal epithelial cell sheet harvested on synthesized carboxymethyl cellulose and dopamine in a limbal stem cell deficiency. J Tissue Eng Regen Med 2020; 15:139-149. [PMID: 33210832 DOI: 10.1002/term.3159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the efficacy and safety of transplantation with human corneal limbal epithelial (HCLE) cell sheets cultured on carboxymethyl cellulose (CMC)-dopamine (DA)-coated substrates and harvested via enzymatic digestion of CMC with cellulase in a rabbit animal model of limbal stem cell deficiency (LSCD). Synthesized CMC-DA was pretreated onto the surface of culture plates. Then, HCLE cells were cultured on precoated CMC-DA and HCLE cell sheets were harvested using cellulase-containing cell culture medium. HCLE cell sheets were evaluated using a live/dead assay, histological examination, and immunofluorescence staining. For in vivo assessment, HCLE cell sheets were transplanted in a rabbit model of LSCD for 2 weeks to determine the effectiveness of the repair. Primary culture of HCLE cells stained positively for p63, cytokeratin (CK)15, and CK12. HCLE cell sheets were generated with a well-preserved morphology and transparency ranging in size from 15 to 19 mm after cellulase-assisted cell sheet generation. HCLE cell sheets uniformly stained positively for human mitochondria, p63, CK15, CK12, CK3/2p, and zonula occludens (ZO)-1. HCLE cell sheet transplantation in a rabbit model of LSCD improved the corneal opacity and neovascularization scores. Transplanted HCLE cell sheets stained positively for p63 and CK12. Transplantation of HCLE cell sheets harvested on CMC-DA coating combined with cellulase is a safe and efficient procedure for corneal epithelial regeneration in a rabbit model of LSCD. This system could enable a promising strategy to regenerate corneal epithelium by transplantation in ocular surface disorders.
Collapse
Affiliation(s)
- Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Hyuck Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Tae Kim
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Eun-Soon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Hong S, Sunwoo JH, Kim JS, Tchah H, Hwang C. Conjugation of carboxymethyl cellulose and dopamine for cell sheet harvesting. Biomater Sci 2019; 7:139-148. [DOI: 10.1039/c8bm00971f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This manuscript focuses on the cell sheet preparation methodology with the conjugation of carboxymethylcellulose (CMC) and dopamine (DA).
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Jeong Hey Sunwoo
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Ji Seon Kim
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Hungwon Tchah
- Department of Convergence Medicine
- University of Ulsan College of Medicine & Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| |
Collapse
|
5
|
Biological Characteristics of Fluorescent Superparamagnetic Iron Oxide Labeled Human Dental Pulp Stem Cells. Stem Cells Int 2017; 2017:4837503. [PMID: 28298928 PMCID: PMC5337366 DOI: 10.1155/2017/4837503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/08/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Abstract
Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106 cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy.
Collapse
|
6
|
Design and cytocompatibility of chitosan-based thermoresponsive cell culture plates. J Appl Biomater Funct Mater 2016; 14:e404-e412. [PMID: 27647386 DOI: 10.5301/jabfm.5000276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The aim of this study was to develop a novel thermoresponsive material suited for tissue engineering and investigate the growth and harmless detachment of cells cultured on the surface of thermoresponsive tissue culture polystyrene (TCPS). METHODS Thermoresponsive N-isopropylacrylamide (NIPAAm) and biocompatible chitosan (CS) were grafted onto the surface of TCPS by ultraviolet (UV)-induced graft polymerization. The chemical composition, surface morphology and thermoresponsiveness of the modified TCPS were investigated by X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM) and contact angle (CA), respectively. Furthermore, the growth and detachment behaviors of mouse fibroblast cells (L929) on the surface of the modified TCPS were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS The modified TCPS exhibited good hydrophobic/hydrophilic property alterations in response to temperature. The cytocompatibility of the materials was improved due to the introduction of CS. Cells could be spontaneously detached from the surface without any damage, by controlling environmental temperature. The viability of cells obtained by temperature induction was higher than that obtained by enzymatic digestion. CONCLUSIONS This study developed a simple and economical method to fabricate thermoresponsive cell culture dishes and provided new thoughts and experimental bases for exploring novel material applied in tissue engineering.
Collapse
|
7
|
Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, Murata T, Hosoyama T, Hamano K. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep 2016; 6:28538. [PMID: 27329845 PMCID: PMC4916509 DOI: 10.1038/srep28538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to confirm the therapeutic effects of mixed sheets consisting of peripheral blood mononuclear cells (PBMNCs) and fibroblasts on cutaneous skin ulcers. Vascular endothelial growth factor (VEGF) secretion in mixed cell sheets was much higher than in PBMNCs and fibroblasts. Concerning the mechanism, transforming growth factor beta 1 and platelet-derived growth factor BB secreted from PBMNCs enhanced VEGF production in fibroblasts. In wounds created on the backs of diabetic mice, the therapeutic effect of mixed cell sheets was similar to that of daily treatment with trafermin, a recombinant human basic fibroblast growth factor. Although abnormal granulation tissue and inflammatory cell infiltration were observed in trafermin-treated wounds, the transplantation of mixed cell sheets resulted in the natural anatomy of subcutaneous tissues. The expression patterns of identical wound-healing factors in wounds were different between mixed sheet-transfected and trafermin-treated animals. Because mixed cell sheets transplanted into full-thickness skin defects were eliminated in hosts by day 21 in syngeneic transplantation models, allogeneic transplantation was performed using mice with different genetic backgrounds. The wound-healing rates were similar between the mixed cell sheet and trafermin groups. Our data indicated that mixed cell sheets represent a promising therapeutic material for cutaneous ulcers.
Collapse
Affiliation(s)
- Koji Ueno
- Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuriko Takeuchi
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Makoto Samura
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuya Tanaka
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tamami Nakamura
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Arata Nishimoto
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tomoaki Murata
- Institute of Laboratory Animals, Yamaguchi University, Ube, Japan
| | - Tohru Hosoyama
- Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
8
|
Higuchi A, Ling QD, Kumar SS, Chang Y, Kao TC, Munusamy MA, Alarfaj AA, Hsu ST, Umezawa A. External stimulus-responsive biomaterials designed for the culture and differentiation of ES, iPS, and adult stem cells. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication. Bioengineering (Basel) 2014; 1:114-133. [DOI: 10.3390/bioengineering1030114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023] Open
|
10
|
Development of a novel rat model with pancreatic fistula and the prevention of this complication using tissue-engineered myoblast sheets. J Gastroenterol 2013. [PMID: 23179607 DOI: 10.1007/s00535-012-0706-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic fistula (PF) is one of the most important complications of pancreatic surgery. The aims of this study were to establish a PF model in rats and to investigate the efficacy of our new method for preventing PF, which utilizes myoblast sheets made using tissue engineering techniques. METHODS To establish a PF model, the rats underwent transection of each of four pancreatic ducts: the gastric, duodenal, common, and splenic ducts, respectively. Their ascitic amylase and lipase levels were then measured. To investigate the efficacy of myoblast sheets at preventing PF, a myoblast sheet was attached to the pancreatic stump in the PF models. The levels of amylase and lipase in both serum and ascites were then measured, and surgical specimens were investigated pathologically. RESULTS The new PF model established by transecting the splenic duct in rats may prove very useful. There were no significant differences in serum amylase and lipase levels between the myoblast sheet (+) group and the sheet (-) group. However, there were significant differences in ascitic amylase and lipase levels between the two groups (p < 0.05). Among the pathological findings, the number of inflammatory cells in the myoblast sheet group was smaller than that in the control group. In addition, the presence of the myoblast sheets on the surface of the pancreatic stump was confirmed by immunofluorescence staining. CONCLUSION Our data demonstrate the efficacy of the new rat model of PF presented herein, and that it might be possible to prevent PF using myoblast sheets.
Collapse
|
11
|
Umemoto T, Yamato M, Nishida K, Okano T. Regenerative medicine of cornea by cell sheet engineering using temperature-responsive culture surfaces. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5742-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Takahashi H, Okano T. Intelligent Surfaces for Cell and Tissue Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell transplantation remains a powerful approach for promising numerous biomedical applications to promote tissue regeneration. Therefore, smart delivery systems of therapeutic cells, as well as therapeutic oligonucleotides and proteins, are required. Although cells have been conventionally delivered by direct injection to target sites, a number of clinical studies showed a limitation due to poor cell retention and survival at the sites, resulting in insufficient effect on tissue/organ repair. Therefore, at present, numerous delivery strategies have been developed, and a variety of polymeric materials play important roles. For example, encapsulation in semi-permeable membrane made from biocompatible polymers (e.g. alginate-poly(l-lysine)-alginate) allows xenograft islets to be delivered in vivo without immune suppression. With progress in tissue engineering, scaffold-based cell/tissue delivery reached the mainstream for regenerating damaged tissues. Various kinds of scaffolds have been fabricated from natural and synthetic polymers, such as collagen or poly(l-lactic-co-glycolic acid), and allowed to provide appropriate nutritional conditions and spatial organization for cell growth. Whereas these scaffolds produce reliable architectures to design cell/tissue delivery, scaffold-free cell/tissue delivery also has opened up a new class technology in the field of regenerative medicine. Thermo-responsive poly(N-isopropylacrylamide)-grafted surfaces allow one to fabricate tissue-like cell monolayers, “cell sheets”, and deliver the cell-dense tissue with associated extra-cellular matrix (ECM) to damaged sites without scaffold implantation. The chapter focuses on unique cell/tissue delivery techniques using the intelligent surfaces. This technology has already been applied to human clinical studies for tissue regeneration, and microfabricated thermo-responsive surfaces are further developing for delivering more complex tissue.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666, Japan
| |
Collapse
|
13
|
He XL, Nie PP, Chen BZ, Li XX, Chen L, Guo G, Zhang R. A novel method to fabricate thermoresponsive microstructures with improved cell attachment/detachment properties. J Biomed Mater Res A 2012; 100:1946-53. [PMID: 22492628 DOI: 10.1002/jbm.a.34138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 11/07/2022]
Abstract
A novel, simple, and rapid method to fabricate thermoresponsive micropatterned substrate for cell adhesion, growth, and thermally induced detachment was developed. Thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), was grafted onto the surface of polystyrene (PS) film with microstructure by plasma-induced graft polymerization technique. The thermoresponsive micropatterned films were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, hydrogen nuclear magnetic resonance ((1) H NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). These results indicated that the grafting ratio of PNIPAAm increased with increasing roughness of PS film. However, the microstructures on the substrate were not affected by grafted PNIPAAm. The optimal grafting conditions, such as plasma treatment time, monomer concentration, graft polymerization time, and graft medium were investigated. The thermoresponsive micropatterned films were investigated with the fibroblast cell (L929) adhesion, proliferation, and thermally induced detachment assay. The microstructure on the thermoresponsive micropatterned substrate facilitated cell adhesion above the lower critical solution temperature (LCST) of PNIPAAm and cell detachment below the LCST. Moreover, it can be used to regulate cell organization and tissue growth.
Collapse
Affiliation(s)
- Xiao-Ling He
- Department of Chemistry, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Xue C, Yonet-Tanyeri N, Brouette N, Sferrazza M, Braun PV, Leckband DE. Protein adsorption on poly(N-isopropylacrylamide) brushes: dependence on grafting density and chain collapse. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8810-8. [PMID: 21662243 PMCID: PMC3412611 DOI: 10.1021/la2001909] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein resistance of poly(N-isopropylacrylamide) brushes grafted from silicon wafers was investigated as a function of the chain molecular weight, grafting density, and temperature. Above the lower critical solution temperature (LCST) of 32 °C, the collapse of the water-swollen chains, determined by ellipsometry, depends on the grafting density and molecular weight. Ellipsometry, radio assay, and fluorescence imaging demonstrated that, below the lower critical solution temperature, the brushes repel protein as effectively as oligoethylene oxide-terminated monolayers. Above 32 °C, very low levels of protein adsorb on densely grafted brushes, and the amounts of adsorbed protein increase with decreasing brush-grafting-densities. Brushes that do not exhibit a collapse transition also bind protein, even though the chains remain extended above the LCST. These findings suggest possible mechanisms underlying protein interactions with end-grafted poly(N-isopropyl acrylamide) brushes.
Collapse
Affiliation(s)
- Changying Xue
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Laboratory, Urbana, IL 61801
| | - Nihan Yonet-Tanyeri
- Department of Material Science and Engineering, University of Illinois, Urbana, IL 61801
| | - Nicolas Brouette
- Département de Physique, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, CP223, B-1050 Bruxelles, Belgique
| | - Michele Sferrazza
- Département de Physique, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, CP223, B-1050 Bruxelles, Belgique
| | - Paul V. Braun
- Department of Material Science and Engineering, University of Illinois, Urbana, IL 61801
| | - Deborah E. Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Laboratory, Urbana, IL 61801
- Department of Chemistry, University of Illinois, Urbana, IL 61801
- To whom correspondence should be addressed: Phone: 217-244-0793, Fax: 217-333-5052,
| |
Collapse
|
15
|
A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2010; 32:2265-73. [PMID: 21194746 DOI: 10.1016/j.biomaterials.2010.11.078] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 11/24/2022]
Abstract
Acellular cartilage can provide a native extracellular matrix for cartilage engineering. However, it is difficult for cells to migrate into acellular cartilage because of its non-porous structure. The aim of this study is to establish a sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Cartilage from adult pig ear was cut into a circular cylinder with a diameter of approximately 6 mm and freeze-sectioned at thicknesses of 10 μm and 30 μm. The sheets were then decellularized and lyophilized. Chondrocytes isolated from newborn pig ear were expanded for 2 passages. The acellular sheets and chondrocytes were then stacked layer-by-layer, in a sandwich model, and cultured in dishes. After 4 weeks of cultivation, the constructs were then either maintained in culture for another 12 weeks or implanted subcutaneously in nude mouse. Histological analysis showed that cells were completely removed from cartilage sheets after decellularization. By re-seeding cells and stacking 20 layers of sheets together, a cylinder-shaped cell sheet was achieved. Cartilage-like tissues formed after 4 weeks of culture. Histological analyses showed the formation of cartilage with a typical lacunar structure. Cartilage formation was more efficient with 10 μm-thick sheets than with 30 μm sheets. Mature cartilage was achieved after 12 weeks of implantation, which was demonstrated by histology and confirmed by Safranin O, Toluidine blue and anti-type II collagen antibody staining. Furthermore, we achieved cartilage with a designed shape by pre-shaping the sheets prior to implantation. These results indicate that the sandwich model could be a useful model for engineering cartilage in vitro and in vivo.
Collapse
|
16
|
Qiu F, Chen Y, Cheng J, Wang C, Xu H, Zhao X. A Simple Method for Cell Sheet Fabrication Using Mica Surfaces Grafted with Peptide Detergent A6K. Macromol Biosci 2010; 10:881-6. [DOI: 10.1002/mabi.200900360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Choi CH, Heydarkhan-Hagvall S, Wu BM, Dunn JCY, Beygui RE, Kim CJ. Cell growth as a sheet on three-dimensional sharp-tip nanostructures. J Biomed Mater Res A 2009; 89:804-17. [PMID: 18523950 DOI: 10.1002/jbm.a.32101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cells in vivo encounter with and react to the extracellular matrix materials on a nanometer scale. Recent advances in nanofabrication technologies allowing the precise control of a nanostructure's pattern, periodicity, shape, and height have enabled a systematic study of cell interactions with three-dimensional nanotopographies. In this report, we examined the behavior of human foreskin fibroblasts on well-ordered dense arrays (post and grate patterns with a 230-nm pitch) of sharp-tip nanostructures with varying three-dimensionalities (from 50 to 600 nm in structural height) over time-until a cell sheet was formed. Although cells started out smaller and proliferated slower on tall nanostructures (both posts and grates) than on smooth surfaces, they became confluent to form a sheet in 3 weeks. On grate patterns, significant cell elongation in alignment with the underlying pattern was observed and maintained over time. On tall nanostructures, cells grew while raised on sharp tips, resulting in a weak total adherence to the solid surface. A sheet of cells was easily peeled off from such surfaces, suggesting that nanoscale topographies can be used as the basis for cell-sheet tissue engineering.
Collapse
Affiliation(s)
- Chang-Hwan Choi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 90095, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Qi H, Shine HD, Li DQ, de Paiva CS, Farley WJ, Jones DB, Pflugfelder SC. Glial cell-derived neurotrophic factor gene delivery enhances survival of human corneal epithelium in culture and the overexpression of GDNF in bioengineered constructs. Exp Eye Res 2008; 87:580-6. [PMID: 18938159 PMCID: PMC4529993 DOI: 10.1016/j.exer.2008.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 12/26/2022]
Abstract
This paper evaluates the effects of adenoviral vector-mediated glial cell-derived neurotrophic factor (GDNF) gene delivery on survival of primary human corneal epithelial cells (PHCEC) established from limbal explants in vitro and the overexpression of GDNF gene in bioengineered human corneal constructs on substrate of corneal stromal discs followed by autograft ex vivo. In vitro, the overexpression of GDNF in the supernatant of PHCEC peaked at day 4, but lasted for at least 4 weeks after the transduction mediated by adenoviral vector. At day 10, the cell viability was 2-fold greater (P < 0.001), the number of terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL)-positive cells was more than 50% lower (P < 0.01) in the GDNF transduction group than the non-transduction group. 5 weeks after the transduction, the living cell population was greater in the GDNF transduction group than the non-transduction group (P < 0.01). In the ex vivo autograft of the bioengineered human corneal constructs, outgrowth of enhanced green fluorescent protein (eGFP) positive cells on the recipient corneoscleral tissue was observed. Overexpression of GDNF in the supernatant peaked at day 2, but was observed for at least 4 weeks after transplantation. At day 5, immunofluorescent staining showed expression of GDNF by all layers of epithelial cells on the graft. Our findings revealed that GDNF is a survival growth factor for cultured human corneal epithelium. The use of bioengineered human corneal constructs containing GDNF-transduced epithelial cells represents a novel method for delivering of this gene to promote survival of transplanted corneal epithelium to treat various corneal surface diseases.
Collapse
Affiliation(s)
- Hong Qi
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
- Peking University Eye Center, Peking University Third Hospital, Peking University, Beijing, China
| | - H. David Shine
- Center for Cell and Gene Therapy and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - William J. Farley
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Dan B. Jones
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007; 28:5033-43. [PMID: 17761277 DOI: 10.1016/j.biomaterials.2007.07.052] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 07/31/2007] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering has yielded several successes in early clinical trials of regenerative medicine using living cells seeded into biodegradable scaffolds. In contrast to methods that combine biomaterials with living cells, we have developed an approach that uses culture surfaces grafted with the temperature-responsive polymer poly(N-isoproplyacrylamide) that allows for controlled attachment and detachment of living cells via simple temperature changes. Using cultured cell sheets harvested from temperature-responsive surfaces, we have established cell sheet engineering to create functional tissue sheets to treat a wide range of diseases from corneal dysfunction to esophageal cancer, tracheal resection, and cardiac failure. Additionally, by exploiting the unique ability of cell sheets to generate three-dimensional tissues composed of only cultured cells and their deposited extracellular matrix, we have also developed methods to create thick vascularized tissues as well as, organ-like systems for the heart and liver. Cell sheet engineering therefore provides a novel alternative for regenerative medicine approaches that require the re-creation of functional tissue structures.
Collapse
Affiliation(s)
- Joseph Yang
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|